Connect with us

News

SpaceX completes Falcon 9 test fire, space station supply mission up next

Published

on

After almost exactly 15 months of dormancy, SpaceX’s Launch Complex 40 (LC-40) came to life with the roar of nine Merlin 1D rocket engines as Falcon 9 1035 conducted its second pre-launch static fire in preparation for the company’s 13th Commercial Resupply Services mission, CRS-13. Previously tasked with the launch of the CRS-11 Cargo Dragon, the booster completed its mission and returned safely to Landing Zone-1 (LZ-1) on June 3 2017. The path towards LC-40’s reactivation has delayed the launch approximately one week, but December 6th’s successful static fire bodes well for the current launch date, 11:46 AM on December 12.

On September 6 2016, LC-40 was effectively destroyed over the course of the Amos-6 failure. In months that followed, SpaceX reactivated LC-39A in order to continue chipping away at the company’s launch manifest, but also began the slow process of damage assessment and reconstruction of LC-40. It is safe to assume that almost every single component of the ground support equipment (GSE) was completely replaced, and interviews with Cape Canaveral’s 45th Space Wing commander suggest that SpaceX went further still, transforming the painful situation into an opportunity.

In an exclusive and frank conversation between Brig. Gen. Wayne Monteith and Florida Today’s Emre Kelly, the commander suggested that extensive design changes and additional hardening measures implemented during reconstruction are expected to make LC-40 exceptionally resilient to the rigors of rocket launches. Most tellingly, if perhaps overly optimistic, Monteith estimated that a second vehicle failure on the order of Amos-6 might only take two months to recover from, compared to the 15 months that followed Amos-6. He attributed this claim to GSE that is now largely buried underground, theoretically protecting the vast apparatus of hand-welded piping necessary to fuel the Falcon 9 launch vehicle. The replacement Transporter/Erector/Launcher (TEL) tasked with supporting Falcon 9 during integration and launch also appears to have been modernized, and will likely end up looking quite similar to the monolithic white TEL that resides at LC-39A.

Advertisement
-->

With CRS-13’s static fire now complete, the mission is set to become the fifth operational reuse of a flight-proven Falcon 9 booster in 2017, thanks to NASA’s unusually rapid acceptance of the new practice. Further still, if Iridium-4’s December 22 launch date holds, and it does look to be stable for the moment, SpaceX will rather incredibly have conducted five commercial reuses of a Falcon 9 in its first year of operations, meaning that one third of SpaceX’s 2017 missions will have launched aboard flight-proven boosters. Also impressive is SpaceX’s full-stop move towards the reuse of Cargo Dragon capsules, and the company stated over the summer that it was hoping to almost completely redirect Cargo Dragon’s manufacturing facilities towards Dragon 2, also known as Crew Dragon. This was most recently reiterated several months ago and is presumed to still be the company’s goal moving forward, and CRS-12 is believed to have been the last “new” Cargo Dragon that will fly. CRS-13’s Dragon previously flew the CRS-6 mission in April 2015.

Photos shared privately with the author show CRS-13’s Falcon 9 to be covered in a graceful layer of soot from its previous recovery, similar in appearance to Falcon 9 1021 seen above. (Instagram/bambi_mydear)

In a December 6 tweet, SpaceX further confirmed that the deeply secretive Zuma mission, previously delayed from an early-November launch as a result of concerns about fairing defects, has now been moved from LC-39A to LC-40 and is understood to be targeting January 4 2018. This will give SpaceX approximately three weeks after the launch of CRS-13 to verify that everything is functioning nominally in what is essentially a new pad.

Meanwhile, with Zuma now officially moved to 40, LC-39A is completely free from routine operations, meaning that SpaceX’s ground crew can now work at will to ready the pad for the inaugural launch of Falcon Heavy, now aiming for early 2018. Aside from Falcon Heavy, recent FCC filings point to two additional SpaceX launches aiming for January, although slips are probable in light of CRS-13’s minor delays. Regardless, December and January are likely to be thrilling months for followers of the intrepid space exploration outfit.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online

Elon Musk shared his update in a recent post on social media platform X.

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.

Elon Musk shared his update in a recent post on social media platform X.

Colossus 2 goes live

The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world. 

But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.  

Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.

Advertisement
-->

Funding fuels rapid expansion

xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.

The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.

xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.

Continue Reading

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading