Connect with us
Three flight proven launches in two months. CRS-13 is pictured above. (SpaceX)Three flight proven launches in two months. CRS-13 is pictured above. (SpaceX) Three flight proven launches in two months. CRS-13 is pictured above. (SpaceX)Three flight proven launches in two months. CRS-13 is pictured above. (SpaceX)

News

Hawthorne, we have a problem: SpaceX has too many boosters

Published

on

Over the course of two years of concerted effort, SpaceX has matured its program of reusable rocketry into a truly staggering success. Over the 24 months since SpaceX first successful recovery of a Falcon 9 booster, there have been stumbles as recovery improved, but overall the company has accomplished 20 near-flawless landings of boosters over that period. Perhaps more impressively, following a handful of failed recovery attempts in 2016, SpaceX has successfully recovered 15 boosters without incident, with the vast majority of those attempts occurring in 2017.

2017 has ultimately been the best year yet for the launch company, marked by what will likely be 18 successful missions (after Iridium-4) for Falcon 9, five commercial reuses of flight-proven boosters, the activation of three essentially new launch facilities, and numerous additional accomplishments behind the scenes as the inaugural launches of Falcon Heavy and Crew Dragon rapidly approach. The success of reusability is arguably the sticking point here, and that success has meant that SpaceX rapidly accumulated a huge stock of recovered Falcon 9s, often to the extent that Elon Musk sometimes joked about running out of space for boosters.

Falcon 9 1035 conducts its second landing after successfully launching CRS-13 on December 15. (NASA)

While it may not be immediately clear if SpaceX is legitimately running out of space with which to store its fleet of boosters, reports of first stages being mothballed or even scrapped suggest that space may indeed be at a premium, or at least indicate that SpaceX is growing increasingly pragmatic as its reuse expertise expands.

This is to say that while there may be room to store a few additional boosters, the reality is that older Block 3 Falcon 9s were simply not designed with an expectation that they would affordably survive multiple reuses. As such, it should come as little surprise that SpaceX is choosing to expend at least a couple of upcoming launches featuring reused boosters. As of December 19, public information indicates that the West Coast launch of Iridium-4 – scheduled for Dec. 22 – will not attempt first stage recovery. While somewhat sad, the decision is entirely rational, and it appears all but certain that Iridium-4 will at a minimum feature an attempt at fairing recovery aboard the highly-modified recovery vessel Mr. Steven.

Instagram is an invaluable asset for core tracking, with a number of SpaceX-aware individuals reliably tagging their Falcon 9 finds. 1036, the Block 3 booster that launched Iridium-2 and will soon refly with Iridium-4 is pictured above. (Instagram/Luka Hargett)

Public Falcon 9 tracking efforts on forums like Reddit and NASASpaceflight indicate that Block 3 boosters include 1029-1038, all of which debuted with their first launches in 2017, beginning with Iridium-1 in January. Of those ten distinct boosters, only two currently lack any future missions, 1032 and 1038; SpaceX has essentially worked the Block 3 fleet to its end-of-life, and that end will be efficiently sped up by simply expending those final reused boosters if or when they are reflown, Iridium-4 included.

Advertisement
-->

Expending those older flight-proven boosters will allow SpaceX to both figuratively and literally replace Falcon 9’s less capable predecessors with Block 4s and eventually Block 5s, both of which are at least marginally more reusable than their predecessors. As reported by Musk himself a few days ago, Falcon 9 Block 5 is expected within a few months. Block 5 has seen considerable modifications made to Falcon 9, and all of those changes are intended to improve ease of reuse: SpaceX’s official goal for the upgrade is to enabled Falcon 9 first stages to be reflown as many as 10 times with little to no refurbishment and a lifespan of 100 flights with significant periodic refurbishment. As a result, it is possible that 2018 might feature a similar period of reused Block 4 launches sans any attempted recoveries.

In the meantime, we can wish the fairing recovery teams the best of luck and mourn several of the pioneers of reusable rocketry. Here’s to hoping that we are treated to a live view of each booster’s demise in homage to their achievements.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading