News
SpaceX’s new Falcon 9 fairing recovery ship kicks off sea trials ahead of next launch
After a brief installation period, SpaceX’s second Falcon 9 fairing-catching ship departed Port Canaveral to begin sea trials with its new net and arms, a critical step before it can be declared ready to attempt its first fairing recovery.
Known as GO Ms. Chief, the ship’s first opportunity could come as early as a few weeks from now, potentially marking a major milestone for SpaceX’s fairing recovery and reuse program.
On his first shoot for Teslarati, photographer Richard Angle (@RDAnglePhoto) managed to capture Ms. Chief while departing Port Canaveral on October 23rd, heading a few miles off the coast to kick off sea trials likely focused on proving out a wide range of new hardware installed in the last month. Those trials began less than 24 hours after technicians installed Ms. Chief’s recovery net for the first time ever, with the ship’s subsequent trip into the Atlantic Ocean essentially marking the completion of her transformation from fast supply vessel (FSV) to SpaceX fairing catcher.
SpaceX is currently in the midst of its longest lull in launch activity since September 2016, likely triggered by the unavailability of customer payloads and the company’s own internal Starlink missions. Unfortunately, although the lull was initially expected to end as early as mid-October, the internal Starlink launch (Starlink-1) expected to lead the charge slipped about a month for unknown reasons and is now expected no earlier than November – likely in the second half of the month.
As a small consolation, Starlink-1’s launch delays mean that the newly-outfitted Ms. Chief may be able to inaugurate its new net and arms by attempting to recover one of the mission’s Falcon 9 fairing halves, while the nearly identical GO Ms. Tree attempts to snag the other half. Even if more tweaking and sea trials are needed to prove her readiness, SpaceX’s next launch is still likely several weeks away, hopefully giving the company’s recovery team plenty of time to prepare Ms. Chief and practice recovery operations.
As of October 2019, SpaceX has successfully caught two Falcon fairing halves during the company’s last two back-to-back recovery attempts, beginning with a Falcon Heavy fairing half caught on June 25th and ending with a Falcon 9 fairing half caught on August 7th. Beyond Ms. Tree’s two catches, SpaceX has successfully recovered a number of additional fairing halves after they performed soft landings in the Atlantic Ocean, including both halves launched in May 2019 for the company’s first dedicated Starlink mission.
Given that SpaceX has technically caught two halves of a payload fairing, it’s possible that one is female and the other male, potentially meaning that one of SpaceX’s upcoming Starlink launches could feature the first fully-reused Falcon 9 fairing. Regardless, assuming one or both were recovered in good condition, it’s even more likely that at least one half (with the other half new) will be reused on one (or both) of those upcoming flights.
Said by CEO Elon Musk to make up approximately 10% of the cost of a new Falcon 9 (~$6M), routine fairing recovery and reuse would close the last remaining loop for Falcon 9 reusability, with boosters and fairings accounting for roughly 75-80% of the total cost of the rocket. SpaceX has no plans to attempt to recover or reuse Falcon 9’s second stage, choosing instead to prioritize development of the fully-reusable Starship launch vehicle.
Preparing the oven-cured carbon composite shells that make up the bulk of SpaceX’s Falcon fairings takes a disproportionate amount of time and factory floor space. Even if Falcon fairings can only be reused once or twice, it would effectively double or triple the effectiveness of the current manufacturing apparatus, cutting the relative cost of production by 50% or more for the price of operating Ms. Tree and Ms. Chief.
Fairing reuse will be a critical part of ensuring that the first phase of SpaceX’s Starlink constellation can be launched as affordably as possible on Falcon 9. With at least 24 launches needed to cover most populated areas, cutting even a few million dollars per launch could produce savings on the order of $100M, equivalent to the production cost of 100-200 Starlink satellites.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.