News
SpaceX’s Falcon 9 and Heavy manifest grows lopsided as launches align for Q4
For a variety of reasons both clear or otherwise, a significant number of SpaceX’s Falcon 9 and Falcon Heavy launches initially scheduled near the beginning or middle of the second half of 2018 are all slipping right into October, November, and December.
While communications satellite Telstar 18V’s two-week slip to NET September 8 and SAOCOM-1A’s own several-week tumble to October 7th appear to have their own respective and discernible reasons, namely some sort of range or payload issue (Telstar) and difficulties with the Falcon 9 rocket (SAOCOM), it’s much harder to know why multiple other payloads have slipped into late 2018.
Although the multiple slips and slides of several payloads and much of SpaceX’s H2 2018 launch manifest may be hard to parse alongside the year’s milestone first half, at least two reliable launch manifest sources (SpaceflightNow and one other) more or less independently corroborate the apparent realignment. Explanations, however, are far harder to find – to be expected in the business of space launch. Still, multiple launch delays can be traced to either payload or rocket issues.
- SpaceX technicians wrench on Merlin 1D and Merlin Vacuum engines. Raptor was apparently dramatically larger in person. (SpaceX)
- SpaceX technicians wrench on Merlin 1D and Merlin Vacuum engines. (SpaceX)
- SpaceX technicians wrench on Merlin 1D and Merlin Vacuum engines. (SpaceX)
Payload-side delays aplenty but rocket-slips, too
Iridium CEO Matt Desch, for example, noted that his company’s Iridium NEXT-8 launch of the constellation’s final 10 satellites is slipping from its original launch date target because of delays preparing the satellites for launch, rather than any issue with SpaceX rocket availability. While not official, the Falcon 9 launch of communications satellite Es’hail-2 has also rapidly jumped from the end of August or early September into Q4 2018 (likely NET October or November), hinting heavily at payload processing delays or technical issues with the complex satellite, as multi-month rocket-side delays would likely preclude interim September and October launches.
Still trying to nail the date down (satellite completion is gating, not rocket availability), but definitely won't be in September.
— Matt Desch (@IridiumBoss) August 13, 2018
Meanwhile, at least two of those prospective Q4 2018 SpaceX launches happen to be rideshare-dedicated, meaning that the payload consists of dozens of smaller satellites manifested and organized by a middleman company or agency. These two launches are Spaceflight’s SSO-A launch (~70 satellites) – currently NET November 2018 – and the US Air Force-led STP-2 mission, designed primarily to help SpaceX certify Falcon Heavy for Air Force launches while also placing roughly two dozen smaller satellites into orbit. STP-2 was delayed for multiple years as SpaceX gradually paced towards Falcon Heavy’s first real launch debut (February 2018), but launch delays (currently NET November 30 2018, probably 2019) will likely be caused by some combination of rocket, payload, and pad delays as SpaceX readies for what is essentially the second debut of much different Falcon Heavy.
While likely less a payload-side delay than a mountain-of-tedious-paperwork-and-bureaucracy delay, SpaceX’s NET November 2018 inaugural (uncrewed) demonstration launch of Crew Dragon, NASA scheduling documents published alongside an August 27 Advisory Council presentation suggest that the spacecraft will be ready for launch as early as September, whereas independent sources and visual observations have confirmed that the new Falcon 9 Block 5 booster (B1051) is either near the end or fully done with its McGregor, Texas acceptance testing. One certainly cannot blame SpaceX or NASA for caution at this stage, but the consequently uncertain launch debut of Crew Dragon almost certainly precludes any Falcon Heavy launches from Pad 39A in the interim, including STP-2’s theoretical NET November 30 launch date, which is literally inside Crew Dragon’s “November 2018” launch target.
- Falcon Heavy explodes off of Pad 39A, February 2018. (SpaceX)
- Falcon Heavy’s side boosters seconds away from near-simultaneous landings at Landing Zones 1 and 2. (SpaceX)
- SpaceX technicians wrench on Merlin 1D and Merlin Vacuum engines. Raptor was apparently dramatically larger in person. (SpaceX)
- It’s currently unclear whether B1046 or B1048 will become the first SpaceX rocket to fly three times. (Tom Cross)
- Falcon 9 B1048 stands proud after its West Coast launch debut, August 2nd. (Pauline Acalin)
On the other hand, several recent delays of SpaceX’s imminent (-ish) launch of Argentinian Earth observation satellite SAOCOM-1A have been suggested by several employees of the country’s CONAE space agency to be rocket-related, as they understand that the satellite itself is effectively ready to head to orbit at any time. It has yet to be officially confirmed, but it’s understood that Falcon 9 B1048 – previously flown on the launch of Iridium-7 – is being refurbished for SAOCOM-1A, potentially contributing to launch delays as SpaceX cautiously works through the inaugural reuses of some of its very first serial Falcon 9 Block 5 boosters.
Time will soon tell, as launching the roughly 8 to 10 launches tentatively remaining on SpaceX’s 2018 manifest will require extensive reuse of Block 5 boosters if multiple slips into 2019 are to be prevented. Regardless, best of luck to SpaceX’s technicians and engineers as they beat back rocket demons, grapple with uncooperative satellite payloads, and navigate the winding paths of Department of Defense and NASA rocket launch certifications.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Elon Musk says he’s open to powering Apple’s Siri with xAI’s Grok
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Elon Musk says he’s willing to help Apple overhaul Siri by integrating xAI’s Grok 4.1, igniting widespread excitement and speculations about a potential collaboration between the two tech giants.
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Musk open to an Apple collaboration
Musk’s willingness to team up with Apple surfaced after an X user suggested replacing Siri with Grok 4.1 to modernize the AI assistant. The original post criticized Siri’s limitations and urged Apple to adopt a more advanced AI system. “It’s time for Apple to team up with xAI and actually fix Siri. Replace that outdated, painfully dumb assistant with Grok 4.1. Siri deserves to be Superintelligent,” the X user wrote.
Musk quoted the post, responding with, “I’m down.” Musk’s comment quickly attracted a lot of attention among X’s users, many of whom noted that a Grok update to Siri would be appreciated because Apple’s AI assistant has legitimately become terrible in recent years. Others also noted that Grok, together with Apple’s potential integration of Starlink connectivity, would make iPhones even more compelling.
Grok promises major Siri upgrades
The enthusiasm stems largely from Grok 4.1’s technical strengths, which include stronger reasoning and improved creative output. xAI also designed the model to reduce hallucinations, as noted in a Reality Tea report. Supporters believe these improvements could address Apple’s reported challenges developing its own advanced AI systems, giving Siri the upgrade many users have waited years for.
Reactions ranged from humorous to hopeful, with some users joking that Siri would finally “wake up with a personality” if paired with Grok. Siri, after all, was a trailblazer in voice assistants, but it is currently dominated by rivals in terms of features and capabilities. Grok could change that, provided that Apple is willing to collaborate with Elon Musk’s xAI.
News
Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.
Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries.
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.
Stellantis unlocks NACS access
Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.
The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.
Tesla Supercharger network proves its value
Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.
Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.
News
Tesla FSD and Robotaxis are making people aware how bad human drivers are
These observations really show that Tesla’s focus on autonomy would result in safer roads for everyone.
Tesla FSD and the Robotaxi network are becoming so good in their self-driving performance, they are starting to highlight just how bad humans really are at driving.
This could be seen in several observations from the electric vehicle community.
Robotaxis are better than Uber, actually
Tesla’s Robotaxi service is only available in Austin and the Bay Area for now, but those who have used the service have generally been appreciative of its capabilities and performance. Some Robotaxi customers have observed that the service is simply so much more affordable than Uber, and its driving is actually really good.
One veteran Tesla owner, @BLKMDL3, recently noted that the Robotaxi service has become better than Uber simply because FSD now drives better than some human drivers. Apart from the fact that Robotaxis allow riders to easily sync their phones to the rear display, the vehicles generally provide a significantly more comfortable ride than their manually-driven counterparts from Uber.
FSD is changing the narrative, one ride at a time
It appears that FSD V14 really is something special. The update has received wide acclaim from users since it was released, and the positive reactions are still coming. This was highlighted in a recent post from Tesla owner Travis Nicolette, who shared a recent experience with FSD. As per the Tesla owner, he was quite surprised as his car was able to accomplish a U-turn in a way that exceeded human drivers.
Yet another example of FSD’s smooth and safe driving was showcased in a recent video, which showed a safety monitor of a Bay Area Robotaxi falling asleep in the driver’s seat. In any other car, a driver falling asleep at the wheel could easily result in a grave accident, but thanks to FSD, both the safety monitor and the passengers remained safe.
These observations, if any, really show that Tesla’s focus on autonomy would result in safer roads for everyone. As per the IIHS, there were 40,901 deaths from motor vehicle crashes in the United States in 2023. The NHTSA also estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers. These crashes led to an estimated 50,000 people injured and 800 deaths. FSD could lower all these tragic statistics by a notable margin.






