News
SpaceX nails second Falcon 9 landing in 48 hours, fairing catch foiled by weather
Just a handful of days after SpaceX’s second-ever successful launch and landing of their upgraded Falcon 9 Block 5, the company has completed the same feat on the opposite side of the United States, debuting the Block 5 rocket with a launch and booster recovery from California’s Vandenberg Air Force Base (VAFB).
The booster in question, Falcon 9 B1048, is the third Block 5 booster to roll off of SpaceX’s Hawthorne, CA assembly line and is now the first Block 5 rocket to launch from the company’s California launch facilities. On the opposite coast, SpaceX’s second Block 5 Falcon 9 booster (B1047) completed its own successful launch and landing, lofting the heaviest commercial satellite to ever reach orbit (Telstar 19V).

While weather during camera setup was absolutely spectacular, the predawn launch window meant that no sun was available to force the ever-present VAFB fog back over the ocean. (Pauline Acalin)
Seven months, fourteen launches
Today’s near-flawless predawn mission saw Falcon 9 place 10 Iridium NEXT satellites in a polar Earth orbit, during which the rocket’s Block 5 booster completed the first landing on Just Read The Instructions in nearly ten months and Mr Steven made his first attempt at catching a parasailing Falcon fairing with his massive net and arms upgrades. Those upgrades, tracked tirelessly by Teslarati photographer Pauline Acalin for the better part of July, took barely a month to go from a clean slate (old arms and net fully uninstalled) to operational, fairing-catching status, an ode to the incredible pace at which SpaceX moves.
Sadly, the vessel’s Iridium-7 fairing catch attempt was sullied from the start by inclement weather – primarily wind shear – that significantly hampered the accuracy of each fairing halve’s parafoil guidance, meaning that Mr Steven’s crew did see the parasailing halves touch down, but too far away to catch them in Mr Steven’s large net. Falcon 9 B1048 had its own difficulties thanks to what engineer and webcast host John Insprucker described as “the worst weather [SpaceX] has ever had” for a Falcon booster landing. Nevertheless, Falcon 9 appeared to stick an off-center but plenty accurate landing aboard drone ship JRTI, although SpaceX technicians are likely going to wish they had the same robotic stage securer located aboard OCISLY on the opposite coast.
- Just a hint of fog at liftoff. (SpaceX)
- Onboard cameras thankfully came in clutch, providing an absolutely extraordinary view of most phases of launch. (SpaceX)
- After MECO and S2 ignition, there were some ethereal plume interaction effects caught on Falcon 9’s onboard cameras. (SpaceX)
- Also Earth’s limb from inside B1048’s interstage. (SpaceX)
- And more unbelievable plume interaction… (SpaceX)
Just Read The Instructions, on the other hand, was similarly tracked but primarily to verify that nothing was happening – the vessel’s last operational trip to the Pacific Ocean dates back to the first half of October 2017. Since then, SpaceX began a process of intentionally expending Falcon 9 boosters that had already flown once before, choosing to essentially start from scratch with a fresh fleet of highly reliable and reusable Falcon 9 Block 5 boosters rather than recover older versions of the rocket and attempt to refurbish them beyond the scope of their designed lifespans.
The Block 5 design, however, has taken the countless lessons-learned from flying and reflying previous versions of Falcon 9 and rolled them all into one (relatively) final iteration of the ever-changing rocket. With any luck and at least a little more iteration, Falcon 9 Block 5 boosters should be capable of launching anywhere from 10 to 100 times, 10 times with minimal or no refurbishment and 100 times with more regular maintenance, much like high-performance jet aircraft do today.
Looks good, but so many details need to be right. Journey back from hypersonic becomes extremely difficult as velocity increases. Altitude is easy, velocity is hard.
— Elon Musk (@elonmusk) July 23, 2018
With three successful launches of new Block 5 boosters now under the new version’s belt, it’s safe to say that the rocket is off to an extremely good start. The most important milestones to watch for over the next several weeks and months will be the first reflight of a recovered Block 5 rocket, the first reuse of a Falcon 9 payload fairing, and then the first third/fourth/fifth/etc. reuse of Block 5 booster. On the horizon, of course, is SpaceX CEO Elon Musk’s challenge to launch a Falcon 9 Block 5 booster two times in less than 24 hours, and do so before the end of 2019.
2018: I’m watching a livestream of a rocket sending satellites to orbit and then landing on a droneship in the ocean — while watching the company’s other droneship return to port with a rocket that did the same thing on the opposite side of the country three days ago. pic.twitter.com/wWA8ZCBAeY
— John Kraus (@johnkrausphotos) July 25, 2018
Roughly 3,000 miles to the East, SpaceX’s just-recovered Florida Block 5 booster wrapped up a picture-perfect arrival in Port Canaveral aboard drone ship Of Course I Still Love You at the exact same time as another Block 5 rocket was launching (and landing) on the opposite coast.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven), check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.





