Connect with us

News

SpaceX nears Falcon 9 lunar rideshare launch as main satellite arrives in FL

Falcon 9 B1047 lands aboard drone ship OCISLY for the second time. B1047 is a strong candidate to launch PSN VI. (SpaceX)

Published

on

SpaceX and customers Pasifik Satelit Nusantara (PSN), SpaceIL, and Spaceflight Industries are reportedly one month away from the NET February 18th launch of Indonesian communications satellite PSN VI (since renamed Nusantara Satu), commercial moon lander Beresheet, and additional unspecified smallsats.

In an encouraging sign that the mission’s launch date might hold, the PSN VI communications satellite – manufactured and delivered by Space Systems Loral (SSL) – arrived at SpaceX’s Cape Canaveral, Florida payload processing facilities in late December 2018 and is likely to be joined by SpaceIL’s Beresheet spacecraft in the next few weeks.

https://twitter.com/sslmda/status/1082427646921846784

Easily the most exotic rideshare mission yet in terms of the sheer variability and newness of almost every aspect, communications satellite PSN VI will not only be joined by the world’s first commercial lunar lander but also play host to rideshare organizer Spaceflight’s first dedicated rideshare mission to a high-energy geostationary transfer orbit (GTO), stretching approximately 200 to 36,000 km (120 to 22,000 miles) above Earth.

Led in large part by satellite contractor SSL’s recently-introduced PODS method of attaching rideshare satellite dispensers to larger geostationary satellites, the company’s main manufacturing focus, GTO or even full-GEO rideshare opportunities could open all kinds of doors for exotic but affordable smallsat missions beyond Earth orbit. If successfully implemented, one could foresee commercial, government, or academic entities with budgets that would have originally had them laughed out of doors actually be able to support their own dedicated missions to the Moon and perhaps even to other planets, asteroids, or comets.

Advertisement
-->

Less than coincidentally, JPL (Jet Propulsion Laboratory) successfully launched, tested, and demonstrated a pair of small signal relay cubesats as viable communications infrastructure during Mars lander InSight’s November 2018 landing attempt, becoming the first smallsats ever to operate in deep space. While the utility of each MarCO cubesat was very limited, the program was an extremely successful technology demonstration and has likely opened a number of doors for smallsat passengers to join future interplanetary missions. Already, the European Space Agency (ESA) hopes to include multiple cubesats on an asteroid defense-focused mission to the Didymous asteroid system in the 2020s.

Advertisement
-->

While SSL apparently tested PODS with success on the communications satellite Hispasat 30W-6, launched by SpaceX in March 2018, it appears that PSN VI may be the first purely commercial use of SSL’s offerings. Whatever the complex relationship is, it appears that PSN VI’s PODS were co-opted (ordered?) by Spaceflight, who then sold those spaces and managed the integration of customers with spacecraft that needed an orbit truly unique for cubesats.

Given the fact that there has been almost complete silence on Spaceflight’s GTO-1 rideshare mission and that the most recent use of PODS on Hispasat was reportedly funded and used by military research agency DARPA, it may actually be reasonable to conclude that Spaceflight is acting as the middleman for a number of satellites built or owned by military agencies, potentially explaining the radio-silence from Spaceflight’s normally talkative communications team.

 

Regardless, this launch is bound to be a fascinating one from a trajectory design perspective. Whether or not Falcon 9’s upper stage is actually going to be involved in the task of helping lunar lander Beresheet on its way to the Moon, info from manufacturer and operator SpaceIL suggests that the small ~600 kg spacecraft will rely on an eccentric method of shifting orbits from around the Earth to intercept the Moon. Over the course of several months of small nudges in the right direction, Beresheet will eventually – and very gradually – oscillate on the tip of the gravitational peak between the two planetary bodies until it eventually slips down the lunar side to eventually intercept the Moon. While very slow, this optimized trajectory will be extremely efficient, allowing as much propellant as possible to be saved for the actual task of landing on the Moon.

Which rocket slipper fits?

Come launch day, the combined mass of PSN VI (Nusantara Satu), Beresheet, and unknown rideshare passenger spacecraft will most likely fall somewhere between 5500 and 6000 kg (~12,000-13,500 lbs), indicating that SpaceX’s Falcon 9 should be more than capable of placing the stack of satellites into a healthy geostationary transfer orbit before attempting to land aboard drone ship Of Course I Still Love You (OCISLY).

Advertisement
-->

 

The question that remains, then, is which Falcon 9 rocket will be tasked with launching the unique mission. Given that SpaceX appears to be rushing full-speed-ahead to complete the next Falcon Heavy in time for a late-February or March launch debut, it seems very unlikely that SpaceX could preserve that aggressive FH launch schedule while also preparing a separate, new Falcon 9 booster for PSN VI. If that’s the case, then the two options at hand are Falcon 9s B1047.3 and B1048.3, both of which have previously launched twice and are currently at SpaceX’s Florida facilities.

In other words, it appears that SpaceX’s first commercial launch to the Moon might lift off on a flight-proven Falcon 9 booster, an unintended but thoroughly fitting precursor to what is hopefully a future full of highly reusable rockets and interplanetary (as in between two or more planetary bodies) spaceflight.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla Optimus shows off its newest capability as progress accelerates

Published

on

Credit: Tesla

Tesla Optimus showed off its newest capability as progress on the project continues to accelerate toward an ultimate goal of mass production in the coming years.

Tesla is still developing Optimus and preparing for the first stages of mass production, where units would be sold and shipped to customers. CEO Elon Musk has always marketed the humanoid robot as the biggest product in history, even outside of Tesla, but of all time.

He believes it will eliminate the need to manually perform monotonous tasks, like cleaning, mowing the lawn, and folding laundry.

However, lately, Musk has revealed even bigger plans for Optimus, including the ability to relieve humans of work entirely within the next 20 years.

Development at Tesla’s Artificial Intelligence and Robotics teams has progressed, and a new video was shown of the robot taking a light jog with what appeared to be some pretty natural form:

Optimus has also made several public appearances lately, including one at the Neural Information Processing Systems, or NeurIPS Conference. Some spectators shared videos of Optimus’s charging rig, as well as its movements and capabilities, most interestingly, the hand:

Advertisement
-->

The hand, forearm, and fingers have been one of the most evident challenges for Tesla in recent times, especially as it continues to work on its 3rd Generation iteration of Optimus.

Musk said during the Q3 Earnings Call:

“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”

Advertisement
-->

The interesting part of the Optimus program so far is the fact that Tesla has made a lot of progress with other portions of the project, like movement, for example, which appears to have come a long way.

However, without a functional hand and fingers, Optimus could be rendered relatively useless, so it is evident that it has to figure this crucial part out first.

Continue Reading

Elon Musk

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Published

on

tesla interior operating on full self driving
Credit: TESLARATI

Elon Musk said in late November that he’s “tried to warn” legacy automakers and “even offered to license Tesla Full Self-Driving, but they don’t want it,” expressing frustration with companies that refuse to adopt the company’s suite, which will eventually be autonomous.

Tesla has long established itself as the leader in self-driving technology, especially in the United States. Although there are formidable competitors, Tesla’s FSD suite is the most robust and is not limited to certain areas or roadways. It operates anywhere and everywhere.

The company’s current position as the leader in self-driving tech is being ignored by legacy automakers, a parallel to what Tesla’s position was with EV development over a decade ago, which was also ignored by competitors.

The reluctance mirrors how legacy automakers initially dismissed EVs, only to scramble in catch-up mode years later–a pattern that highlights their historical underestimation of disruptive innovations from Tesla.

Elon Musk’s Self-Driving Licensing Attempts

Musk and Tesla have tried to push Full Self-Driving to other car companies, with no true suitors, despite ongoing conversations for years. Tesla’s FSD is aiming to become more robust through comprehensive data collection and a larger fleet, something the company has tried to establish through a subscription program, free trials, and other strategies.

Advertisement
-->

Tesla CEO Elon Musk sends rivals dire warning about Full Self-Driving

However, competing companies have not wanted to license FSD for a handful of speculative reasons: competitive pride, regulatory concerns, high costs, or preference for in-house development.

Déjà vu All Over Again

Tesla tried to portray the importance of EVs long ago, as in the 2010s, executives from companies like Ford and GM downplayed the importance of sustainable powertrains as niche or unprofitable.

Musk once said in a 2014 interview that rivals woke up to electric powertrains when the Model S started to disrupt things and gained some market share. Things got really serious upon the launch of the Model 3 in 2017, as a mass-market vehicle was what Tesla was missing from its lineup.

This caused legacy companies to truly wake up; they were losing market share to Tesla’s new and exciting tech that offered less maintenance, a fresh take on passenger auto, and other advantages. They were late to the party, and although they have all launched vehicles of their own, they still lag in two major areas: sales and infrastructure, leaning on Tesla for the latter.

Advertisement
-->

Musk’s past warnings have been plentiful. In 2017, he responded to critics who stated Tesla was chasing subsidies. He responded, “Few people know that we started Tesla when GM forcibly recalled all electric cars from customers in 2003 and then crushed them in a junkyard,” adding that “they would be doing nothing” on EVs without Tesla’s efforts.

Advertisement
-->

Companies laughed off Tesla’s prowess with EVs, only to realize they had made a grave mistake later on.

It looks to be happening once again.

A Pattern of Underestimation

Both EVs and self-driving tech represent major paradigm shifts that legacy players view as threats to their established business models; it’s hard to change. However, these early push-aways from new tech only result in reactive strategies later on, usually resulting in what pains they are facing now.

Ford is scaling back its EV efforts, and GM’s projects are hurting. Although they both have in-house self-driving projects, they are falling well behind the progress of Tesla and even other competitors.

It is getting to a point where short-term risk will become a long-term setback, and they may have to rely on a company to pull them out of a tough situation later on, just as it did with Tesla and EV charging infrastructure.

Advertisement
-->

Tesla has continued to innovate, while legacy automakers have lagged behind, and it has cost them dearly.

Implications and Future Outlook

Moving forward, Tesla’s progress will continue to accelerate, while a dismissive attitude by other companies will continue to penalize them, especially as time goes on. Falling further behind in self-driving could eventually lead to market share erosion, as autonomy could be a crucial part of vehicle marketing within the next few years.

Eventually, companies could be forced into joint partnerships as economic pressures mount. Some companies did this with EVs, but it has not resulted in very much.

Self-driving efforts are not only a strength for companies themselves, but they also contribute to other things, like affordability and safety.

Tesla has exhibited data that specifically shows its self-driving tech is safer than human drivers, most recently by a considerable margin. This would help with eliminating accidents and making roads safer.

Advertisement
-->

Tesla’s new Safety Report shows Autopilot is nine times safer than humans

Additionally, competition in the market is a good thing, as it drives costs down and helps innovation continue on an upward trend.

Conclusion

The parallels are unmistakable: a decade ago, legacy automakers laughed off electric vehicles as toys for tree-huggers, crushed their own EV programs, and bet everything on the internal-combustion status quo–only to watch Tesla redefine the industry while they scrambled for billions in catch-up capital.

Today, the same companies are turning down repeated offers to license Tesla’s Full Self-Driving technology, insisting they can build better autonomy in-house, even as their own programs stumble through recalls, layoffs, and missed milestones. History is not merely rhyming; it is repeating almost note-for-note.

Elon Musk has spent twenty years warning that the auto industry’s bureaucratic inertia and short-term thinking will leave it stranded on the wrong side of technological revolutions. The question is no longer whether Tesla is ahead–it is whether the giants of Detroit, Stuttgart, and Toyota will finally listen before the next wave leaves them watching another leader pull away in the rear-view mirror.

Advertisement
-->

This time, the stakes are not just market share; they are the very definition of what a car will be in the decades ahead.

Continue Reading

News

Waymo driverless taxi drives directly into active LAPD standoff

No injuries occurred, and the passengers inside the vehicle were safely transported to their destination, as per a Waymo representative.

Published

on

Credit: Alex Choi/Instagram

A video posted on social media has shown an occupied Waymo driverless taxi driving directly into the middle of an active LAPD standoff in downtown Los Angeles. 

As could be seen in the short video, which was initially posted on Instagram by user Alex Choi, a Waymo driverless taxi drove directly into the middle of an active LAPD standoff in downtown Los Angeles. 

The driverless taxi made an unprotected left turn despite what appeared to be a red light, briefly entering a police perimeter. At the time, officers seemed to be giving commands to a prone suspect on the ground, who looked quite surprised at the sudden presence of the driverless vehicle. 

People on the sidewalk, including the person who was filming the video, could be heard chuckling at the Waymo’s strange behavior. 

The Waymo reportedly cleared the area within seconds. No injuries occurred, and the passengers inside the vehicle were safely transported to their destination, as per a Waymo representative. Still, the video spread across social media, with numerous netizens poking fun at the gaffe. 

Advertisement
-->

Others also pointed out that such a gaffe would have resulted in widespread controversy had the vehicle involved been a Tesla on FSD. Tesla is constantly under scrutiny, with TSLA shorts and similar groups actively trying to put down the company’s FSD program.

A Tesla on FSD or Robotaxi accidentally driving into an active police standoff would likely cause lawsuits, nonstop media coverage, and calls for a worldwide ban, at the least.

This was one of the reasons why even minor traffic infractions committed by the company’s Robotaxis during their initial rollout in Austin received nationwide media attention. This particular Waymo incident, however, will likely not receive as much coverage.  

Continue Reading