News
SpaceX on track for US Air Force Falcon 9 mission later this year
Reading between the lines, the US Air Force has effectively confirmed that GPS III Space Vehicle 03 (SV03) – the third GPS III satellite built by Lockheed Martin – is ready for launch aboard a SpaceX Falcon 9 rocket, scheduled no earlier than December 2019.
In December 2018, SpaceX successfully launched the first GPS III spacecraft aboard an expendable Falcon 9 Block 5 rocket, kicking off a launch campaign – shared between SpaceX and ULA – that will likely last until 2023 or 2024. Thus far, ULA has won a single GPS III launch contract, scheduled for July 2019, while SpaceX has won three (with options for two more). Thanks to competition forcefully reintroduced by a 2014 SpaceX lawsuit, the USAF – and thus US taxpayers – are likely saving a minimum of $50M per GPS III launch.
In late 2018, SpaceX’s closer followers were surprised to discover that brand new Falcon 9 Block 5 booster B1054 – the first to be officially certified for a critical operational military launch – was to be expended, making no attempt to land. This was confusing for several reasons.
“If Falcon 9 [was to be] expended solely because of mission performance requirements, despite the oddly low payload mass (~3800 kg) and comparatively low-energy orbit (~20,000 km), the only possible explanation for no attempted recovery would be the need for Falcon 9’s upper stage to circularize the orbit after a long coast. However, the mission parameters the USAF shopped around for would have placed the GPS III satellite into an elliptical orbit of 1000 km by 20,181 km, an orbit that would almost without a doubt leave Falcon 9 with enough propellant for a drone ship recovery.”
— Teslarati.com, December 2018
As it turns out, there was, in fact, nothing unique about the elliptical, medium-energy orbit GPS III SV01 was placed in. According to external analysis of the Falcon 9 upper stage’s final deorbit activities, SpaceX had “plenty of extra performance available”, objectively indicating that that excess performance was intentionally removed from booster B1054 at the cost of its ability to land. The (unconfirmed) reason for this is quite simple: the US Air Force chose extreme – perhaps even excessive – caution to account for the minute chance that myriad failures might happen mid-launch.
To sacrifice, or not to sacrifice
According to a USAF statement made in mid-May, GPS III Space Vehicle 03 (SV03) has been officially classed as “available for launch”, jargon that means the satellite is fully assembled and has successfully completed extensive pre-launch testing. For SpaceX’s inaugural GPS III launch (SV01), a pathfinder that carried unique wait and likely took additional processing time, SpaceX and the USAF took roughly five months to go from shipping the satellite to Florida to going vertical atop Falcon 9. More likely than not, GPS III SV03 has already begun to be prepared for transport from California to Florida, meaning that SV03 is roughly 1-2 months ahead of the schedule SV01 followed ahead of its Falcon 9 launch debut.
So: the GPS III satellite is ready for launch. The next critical milestones will be the satellite’s transport to Florida and SpaceX’s completion of the mission’s USAF-grade Falcon 9. B1054’s technically unnecessary sacrifice thus raises a question for SpaceX’s next GPS III launch, currently scheduled no earlier than December 2018: will another fresh Falcon 9 Block 5 booster be sacrificed to the gods of Obsessively Cautious Margins?

The optimist in me wants to say, “Of course!” With GPS III SV01, SpaceX perfectly demonstrated Falcon 9’s performance and permitted the USAF the luxury of expending a brand new Falcon 9 booster to satisfy the customer’s desire for extremely cautious margins. The Falcon 9 upper stage’s luxuriously expensive (in terms of delta V) deorbit burns – performed after a several-hour cost in orbit – served as another definitive demonstration of the rocket’s intentionally underutilized performance. Having demonstrated a flawless launch with margins on margins, it seems reasonable that the US Air Force would permit SpaceX the freedom to recover Falcon 9 B105x after launching GPS III SV03.
On the other hand, the USAF and Department of Defense are not exactly known for their rational, evidence-based strategies of decision-making and procurement. As such, it’s safe to say that – without official info from SpaceX or the USAF – the answer to the question of whether SpaceX will need to continue expending valuable boosters for GPS launches is entirely up in the air – call it a 50-50 split.

In the meantime, GPS III SV03’s Falcon 9 booster is likely several months away from shipping off to SpaceX’s McGregor, Texas facilities for static fire testing. Up next for SpaceX is a critical Falcon Heavy launch that could secure the rocket’s certification for US military launches, become the first USAF mission to utilize flight-proven SpaceX boosters, and pave the way for the USAF to develop a dedicated certification process for launching on commercially-developed reusable rockets.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla CEO Elon Musk teases insane capabilities of next major FSD update
Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.
Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.
However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”
14.3 is where the last big piece of the puzzle finally lands
— Elon Musk (@elonmusk) November 21, 2025
There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.
One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.
We experienced it most frequently at intersections, especially four-way stop signs.
Elon Musk hints at when Tesla can fix this FSD complaint with v14
In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.
Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.
However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.
Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.
News
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.
With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.
While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.
With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.
However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.
The Good
Lack of Brake Stabbing and Hesitation
Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.
This was a major problem.
However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.
Can report on v14.2 today there were ZERO instances of break stabbing or hesitation at intersections today
It was a significant improvement from v14.1.x
— TESLARATI (@Teslarati) November 21, 2025
This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.
Speed Profiles Seem to Be More Reasonable
There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.
Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.
It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.
Better Overall Operation
I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.
v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.
The Bad
Parking
It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.
This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.
Any issues with parking on your end? 14.1.7 didn’t have this trouble with parking pic.twitter.com/JPLRO2obUj
— TESLARATI (@Teslarati) November 21, 2025
However, this was truly my only complaint about v14.2.
You can check out our full 62-minute ride-along below:
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.


