News
SpaceX on track for US Air Force Falcon 9 mission later this year
Reading between the lines, the US Air Force has effectively confirmed that GPS III Space Vehicle 03 (SV03) – the third GPS III satellite built by Lockheed Martin – is ready for launch aboard a SpaceX Falcon 9 rocket, scheduled no earlier than December 2019.
In December 2018, SpaceX successfully launched the first GPS III spacecraft aboard an expendable Falcon 9 Block 5 rocket, kicking off a launch campaign – shared between SpaceX and ULA – that will likely last until 2023 or 2024. Thus far, ULA has won a single GPS III launch contract, scheduled for July 2019, while SpaceX has won three (with options for two more). Thanks to competition forcefully reintroduced by a 2014 SpaceX lawsuit, the USAF – and thus US taxpayers – are likely saving a minimum of $50M per GPS III launch.
In late 2018, SpaceX’s closer followers were surprised to discover that brand new Falcon 9 Block 5 booster B1054 – the first to be officially certified for a critical operational military launch – was to be expended, making no attempt to land. This was confusing for several reasons.
“If Falcon 9 [was to be] expended solely because of mission performance requirements, despite the oddly low payload mass (~3800 kg) and comparatively low-energy orbit (~20,000 km), the only possible explanation for no attempted recovery would be the need for Falcon 9’s upper stage to circularize the orbit after a long coast. However, the mission parameters the USAF shopped around for would have placed the GPS III satellite into an elliptical orbit of 1000 km by 20,181 km, an orbit that would almost without a doubt leave Falcon 9 with enough propellant for a drone ship recovery.”
— Teslarati.com, December 2018
As it turns out, there was, in fact, nothing unique about the elliptical, medium-energy orbit GPS III SV01 was placed in. According to external analysis of the Falcon 9 upper stage’s final deorbit activities, SpaceX had “plenty of extra performance available”, objectively indicating that that excess performance was intentionally removed from booster B1054 at the cost of its ability to land. The (unconfirmed) reason for this is quite simple: the US Air Force chose extreme – perhaps even excessive – caution to account for the minute chance that myriad failures might happen mid-launch.
To sacrifice, or not to sacrifice
According to a USAF statement made in mid-May, GPS III Space Vehicle 03 (SV03) has been officially classed as “available for launch”, jargon that means the satellite is fully assembled and has successfully completed extensive pre-launch testing. For SpaceX’s inaugural GPS III launch (SV01), a pathfinder that carried unique wait and likely took additional processing time, SpaceX and the USAF took roughly five months to go from shipping the satellite to Florida to going vertical atop Falcon 9. More likely than not, GPS III SV03 has already begun to be prepared for transport from California to Florida, meaning that SV03 is roughly 1-2 months ahead of the schedule SV01 followed ahead of its Falcon 9 launch debut.
So: the GPS III satellite is ready for launch. The next critical milestones will be the satellite’s transport to Florida and SpaceX’s completion of the mission’s USAF-grade Falcon 9. B1054’s technically unnecessary sacrifice thus raises a question for SpaceX’s next GPS III launch, currently scheduled no earlier than December 2018: will another fresh Falcon 9 Block 5 booster be sacrificed to the gods of Obsessively Cautious Margins?

The optimist in me wants to say, “Of course!” With GPS III SV01, SpaceX perfectly demonstrated Falcon 9’s performance and permitted the USAF the luxury of expending a brand new Falcon 9 booster to satisfy the customer’s desire for extremely cautious margins. The Falcon 9 upper stage’s luxuriously expensive (in terms of delta V) deorbit burns – performed after a several-hour cost in orbit – served as another definitive demonstration of the rocket’s intentionally underutilized performance. Having demonstrated a flawless launch with margins on margins, it seems reasonable that the US Air Force would permit SpaceX the freedom to recover Falcon 9 B105x after launching GPS III SV03.
On the other hand, the USAF and Department of Defense are not exactly known for their rational, evidence-based strategies of decision-making and procurement. As such, it’s safe to say that – without official info from SpaceX or the USAF – the answer to the question of whether SpaceX will need to continue expending valuable boosters for GPS launches is entirely up in the air – call it a 50-50 split.

In the meantime, GPS III SV03’s Falcon 9 booster is likely several months away from shipping off to SpaceX’s McGregor, Texas facilities for static fire testing. Up next for SpaceX is a critical Falcon Heavy launch that could secure the rocket’s certification for US military launches, become the first USAF mission to utilize flight-proven SpaceX boosters, and pave the way for the USAF to develop a dedicated certification process for launching on commercially-developed reusable rockets.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla AI Head says future FSD feature has already partially shipped
Tesla’s Head of AI, Ashok Elluswamy, says that something that was expected with version 14.3 of the company’s Full Self-Driving platform has already partially shipped with the current build of version 14.2.
Tesla and CEO Elon Musk have teased on several occasions that reasoning will be a big piece of future Full Self-Driving builds, helping bring forth the “sentient” narrative that the company has pushed for these more advanced FSD versions.
Back in October on the Q3 Earnings Call, Musk said:
“With reasoning, it’s literally going to think about which parking spot to pick. It’ll drop you off at the entrance of the store, then go find a parking spot. It’s going to spot empty spots much better than a human. It’s going to use reasoning to solve things.”
Musk said in the same month:
“By v14.3, your car will feel like it is sentient.”
Amazingly, Tesla Full Self-Driving v14.2.2.2, which is the most recent iteration released, is very close to this sentient feeling. However, there are more things that need to be improved, and logic appears to be in the future plans to help with decision-making in general, alongside other refinements and features.
On Thursday evening, Elluswamy revealed that some of the reasoning features have already been rolled out, confirming that it has been added to navigation route changes during construction, as well as with parking options.
He added that “more and more reasoning will ship in Q1.”
🚨 Tesla’s Ashok Elluswamy reveals Nav decisions when encountering construction and parking options contain “some elements of reasoning”
More uses of reasoning will be shipped later this quarter, a big tidbit of info as we wait v14.3 https://t.co/jty8llgsKM
— TESLARATI (@Teslarati) January 9, 2026
Interestingly, parking improvements were hinted at being added in the initial rollout of v14.2 several months ago. These had not rolled out to vehicles quite yet, as they were listed under the future improvements portion of the release notes, but it appears things have already started to make their way to cars in a limited fashion.
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
As reasoning is more involved in more of the Full Self-Driving suite, it is likely we will see cars make better decisions in terms of routing and navigation, which is a big complaint of many owners (including me).
Additionally, the operation as a whole should be smoother and more comfortable to owners, which is hard to believe considering how good it is already. Nevertheless, there are absolutely improvements that need to be made before Tesla can introduce completely unsupervised FSD.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”
News
Tesla earns top honors at MotorTrend’s SDV Innovator Awards
MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.
As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla leaders and engineers recognized
The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.
Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.
Tesla’s software-first strategy
While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.
This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.


