Connect with us

News

SpaceX Starlink launch suffers third weather scrub, next attempt Tuesday

SpaceX is headed for its third Starlink-12 launch attempt after ~20 days of delays. (SpaceX)

Published

on

Update: Multiple weather constraint violations forced SpaceX to scrub today’s Starlink-12 launch attempt less than half an hour before liftoff, marking the mission’s third weather-related scrub and fourth abort overall since mid-September. As of October 4th, the US Air Force 45th Space Wing predicted a 40% chance of weather violation.

SpaceX’s fifth Starlink-12 launch attempt is scheduled no earlier than 7:29 am EDT (11:29 UTC) on Tuesday, October 6th. The mission-specific T-1 weather forecast predicts a 70% chance of favorable conditions.

On the heels of a rare last-second Falcon 9 launch abort, SpaceX is closing in on its third attempt to launch the 12th batch of operational Starlink satellites.

Scheduled to lift off from Kennedy Space Center (KSC) Launch Complex 39A (Pad 39A) no earlier than (NET) 7:51 am EDT (11:51 UTC) on Monday, October 5th, Starlink-12 was originally scheduled to launch in mid-September. Bad weather at the Atlantic Ocean landing zone caused a ten-day delay from September 17th to the 27th, followed by a pad weather delay on the 28th.

Advertisement

After a ULA Delta IV Heavy mission with range priority was scrubbed for the seventh time on September 30th, SpaceX tried to launch Starlink-12 again but suffered an abort – later blamed on a pad sensor – seven seconds before liftoff. Finally, a new Falcon 9 launch with an upgraded GPS III satellite aboard was aborted just two seconds before liftoff on October 2nd. Moved from NET October 3rd to the 5th just prior to GPS III SV04’s separate launch delay, Starlink-12 is now up next.

Interrupting what has otherwise been a much-improved level of launch readiness and schedule reliability for Falcon 9 and Falcon Heavy’s Block 5 upgrade, this recent string of delays – while mostly the result of weather and ULA’s own NROL-44 launch delays – has even become a concern for CEO Elon Musk. Currently focused on building out SpaceX’s new Starship factory and pushing towards the rocket’s first high-altitude and orbital test flights in Boca Chica, Texas, Musk stated that he would be flying to Cape Canaveral “to review hardware in person” on the week of October 5th.

Musk also says that SpaceX is “doing a broad review of launch site, propulsion, structures, avionics, range, & regulatory constraints” to determine if an apparent goal of “48 launches” in 2021 is feasible.

To be fair to SpaceX, most of the plague of delays suffered by the company in the last month has been caused by a mixture of weather and the range’s preferential treatment of ULA’s “national security” NROL-44 launch. Additionally, of an impressive seven ULA NROL-44 launch attempts between August 26th and September 30th, just a single one was caused by weather – the remaining six a result of a wide variety of technical software and hardware bugs. SpaceX’s Starlink-12 and GPS III SV04 missions have only suffered one technical launch abort each on September 30th and October 2nd.

Advertisement

In other words, short of upgrading Falcon rockets to launch and land in worse weather conditions, most of SpaceX’s delays have been largely out of the company’s control, while ULA’s NROL-44 struggles demonstrate just how much worse things could be. According to an unofficial analysis of 44 Falcon Block 5 launches since May 2018, only four technical launch aborts have been triggered by a booster fault. Pad-caused aborts have been roughly as common, meaning that 1 in roughly 6 to 8 SpaceX launches suffers some kind of abort shortly before liftoff, on average.

Both captured in one frame, SpaceX’s GPS III SV04 and Starlink-12 missions have run into repeated launch delays over the last 1-3 weeks. (SpaceX)

Altogether, Falcon Block 5 rockets have been relatively dependable for on-time, on-schedule launches even if SpaceX has struggled with more repeated delays than usual in the last few months. To achieve anywhere close to 48 launches annually, however, major improvements will need to be made, likely including upgrades to whatever is responsible for Falcon 9’s weather constraints. As of October 2020, SpaceX has never launched four times in one month (or four times in the same ~30-day period). To launch 48 times in one year, SpaceX will need to average four launches per month. That, of course, in no way accounts for the possibility that 2020-esque summer weather could functionally cut 4-8+ weeks off of Falcon 9’s annual availability.

Regardless, SpaceX will begin live coverage of the third Starlink-12 launch attempt around 7:35 am EDT (11:35 UTC). Tune in to (hopefully) catch the company’s 17th launch this year.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading