News
SpaceX’s first Falcon Heavy launch in three years eyes late-October liftoff
For the second time in 2022, SpaceX’s Falcon Heavy rocket has a firm launch date for the first time in more than three years.
Cursed by a seemingly relentless flood of delays impacting almost every one of the rocket’s payloads, Falcon Heavy made it within three or four months of ending its launch drought as recently as June 2022. At the time, the rocket was more or less ready to begin assembly, but NASA announced late that month that the Jet Propulsion Laboratory (JPL) and supplier Maxar had failed to finish qualifying software needed to power its Psyche spacecraft. Designed to journey to and enter orbit around the asteroid 16 Psyche, the complex trajectory required to reach it constrained the mission to a launch window sometime between August and October.
When JPL and Maxar were unable to properly test the spacecraft’s software in time for that window, they were forced to stand down and wait until the next earliest window, which begins in July 2023. That left Falcon Heavy with three more possible payloads to launch in 2022, but all three were chronically delayed and there was little reason to believe that even one of them would be ready to launch before 2023. However, Falcon Heavy’s single most delayed payload appears to have made a breakthrough, giving the most powerful rocket currently in operation at least one more shot at a 2022 launch.
Continuing an excellent series of reports tracking Falcon Heavy’s never-ending US military payload delays, Spaceflight Now broke the news with an official statement from the US Space Force, which confirmed that an unspecified industry partner had finally resolved payload problems that have delayed the military’s USSF-44 mission by two years. More importantly, the USSF spokesperson revealed a specific target of October 28th.
The US military has repeatedly offered implausible launch targets for USSF-44 with little to no official explanation for the mission’s delays, making it reasonable to appraise any specific launch date much like a boy crying wolf. But this particular target, announced within the same month as its date, is a bit more believable on its own.
Thankfully, it’s not on its own. On October 7th, SpaceX sent out an email confirming that Falcon Heavy is scheduled to launch USSF-44 sometime in October and asking members of the media to register for press site access and remote camera setup opportunities. It’s possible that the rocket or USSF-44 satellites will run into issues and trigger additional delays, but a press accreditation email is about as close as one can get to a believable guarantee that a secretive US military payload is on track for a SpaceX launch scheduled more than a week or so in the future.
The mission’s next major step forward will be the assembly of Falcon Heavy inside SpaceX’s main hangar at its NASA Kennedy Space Center LC-39A pad. Photos SpaceX shared last month and earlier this month of preparations for Crew-5, Falcon 9’s eighth successful astronaut launch, show that at least two of the four main stages that make up Falcon Heavy are already inside that hangar. One of two new Falcon Heavy side boosters was clearly spotted on September 30th.



The rocket’s expendable upper stage was also clearly visible in a September 23rd photo. Ordinarily, Falcon upper stages are nearly indistinguishable from each other, but the upper stage stored behind the Crew-5 upper stage in the foreground features a unique grey band around the bottom of its airframe. In July 2019, SpaceX tested another Falcon 9 upper stage with the same grey band, which a spokesperson explained was meant to improve the rocket’s longevity in orbit.
Long orbital coasts of six or more hours are necessary for some of the most challenging launch trajectories. Direct-to-geostationary launches are the most common type of mission to require long coast capabilities and are often demanded by the US military. The grey band’s purpose is to increase the amount of heating absorbed from sunlight to warm the liquid kerosene (RP-1) fuel contained within that part of the rocket. When it gets too cold, kerosene – which freezes at a much higher temperature than Falcon’s liquid oxygen oxidizer – becomes viscous and slush-like before it freezes solid. If ingested, slushy fuel would likely prevent ignition or destroy the upper stage’s Merlin engine.
USSF-44 will be SpaceX’s first direct geostationary launch attempt, explaining why the grey band has reappeared more than three years after its first test. Coincidentally, Falcon Heavy’s third and latest launch occurred in June 2019, just one month before that upper stage test. 40 months later, the rocket might finally launch again, and it will do so by attempting what is likely SpaceX’s most difficult customer mission to date. To enable the high performance required for the mission, USSF-44 will also intentionally expend a Falcon Heavy booster for the first time. The rocket’s two new side boosters will boost back to Florida and land side by side at LZ-1 and LZ-2, but its new center core will be expended after a single flight.

SpaceX has already finished converting Pad 39A’s mobile transporter/erector, which was previously set up for single-core Falcon 9 rockets. The T/E will eventually roll inside the pad’s integration hangar, confirming that Falcon Heavy has been fully assembled and is about to be installed on the structure. The rocket will then be rolled out to the pad and brought vertical for static fire testing, a process that will likely begin at least a week before the current October 28th launch target.
If testing is successful, Falcon Heavy will return to the hangar, have its fairing and USSF-44 payload installed, and roll out to the pad one last time. Stay tuned for updates on that ongoing process.
Elon Musk
Tesla CEO Elon Musk teases insane capabilities of next major FSD update
Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.
Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.
However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”
14.3 is where the last big piece of the puzzle finally lands
— Elon Musk (@elonmusk) November 21, 2025
There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.
One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.
We experienced it most frequently at intersections, especially four-way stop signs.
Elon Musk hints at when Tesla can fix this FSD complaint with v14
In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.
Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.
However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.
Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.
News
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.
With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.
While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.
With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.
However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.
The Good
Lack of Brake Stabbing and Hesitation
Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.
This was a major problem.
However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.
Can report on v14.2 today there were ZERO instances of break stabbing or hesitation at intersections today
It was a significant improvement from v14.1.x
— TESLARATI (@Teslarati) November 21, 2025
This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.
Speed Profiles Seem to Be More Reasonable
There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.
Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.
It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.
Better Overall Operation
I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.
v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.
The Bad
Parking
It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.
This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.
Any issues with parking on your end? 14.1.7 didn’t have this trouble with parking pic.twitter.com/JPLRO2obUj
— TESLARATI (@Teslarati) November 21, 2025
However, this was truly my only complaint about v14.2.
You can check out our full 62-minute ride-along below:
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.