Connect with us
SpaceX replaced its tripod stand with a more functional ground-level test stand. (Teslarati/Aero Photo) SpaceX replaced its tripod stand with a more functional ground-level test stand. (Teslarati/Aero Photo)

News

SpaceX Falcon Heavy side booster arrives at Texas test facilities

SpaceX's Falcon Heavy Block 5 side booster is pictured here in Texas in November 2018. (Teslarati/Aero Photo)

Published

on

NASASpaceflight.com reports that the first new booster for SpaceX’s next Falcon Heavy launch has arrived at the company’s McGregor, Texas test facilities.

The canonical sign that SpaceX is rapidly progressing towards its next Falcon Heavy launch, the mission – set to carry the US military’s US Space Force 44 (USSF-44) satellite(s) directly to geostationary orbit (GEO) – requires all new boosters. For SpaceX, barring a major surprise in the next five months, USSF-44 will be the first operational direct-to-GEO launch in the company’s history – a milestone years and multiple test flights in the making.

US military officials have begun to at least vaguely support the idea of flying payloads on flight-proven SpaceX rockets but it looks to be a long uphill battle ahead of the company. It took almost half a decade and four-dozen successful booster landings for the US Air Force to even allow SpaceX to attempt to land a Falcon 9 booster after an operational military launch. As a result, the company will likely be building new rockets for its military launches for the indefinite future – Falcon Heavy and its three boosters included.

The photo at the top of this article shows a largely identical Falcon Heavy Block 5 side booster – either B1052 or B1053 – during a late-2018 static fire acceptance test campaign in McGregor, Texas.

Based on NASASpaceflight.com’s aerial photos of the latest rocket to arrive in McGregor, Texas, one would assume that SpaceX was simply testing a new Falcon 9 first stage. Notably, the booster appears to have a Falcon 9 interstage installed, whereas Falcon Heavy side boosters have historically been tested with nosecones installed. However, by analyzing the layout of decals visible on its exterior, author Thomas Burghardt discovered that the booster – believed to be B1064 – is likely the first of two new Falcon Heavy side boosters needed for USSF-44.

Advertisement

For unknown reasons, SpaceX has outfitted, transported, and prepared B1064 for acceptance testing with a years-old interstage installed, effectively making it a Falcon Heavy side booster in Falcon 9 clothing (sans nosecone).

The booster captured by NASASpaceflight likely left SpaceX’s Hawthorne factory – regular Falcon 9 interstage installed – in late August.
Seemingly used as a stand-in during production, a pre-Block 5 interstage can be seen attached to a Block 5 booster on the right in September 2018. (SpaceX)

In its current configuration, the process of manufacturing three new Falcon Heavy boosters at SpaceX’s Hawthorne, CA factory takes at least half a year from the start of tank welding to shipment. After each booster is completed, it must ship to McGregor, Texas for at least 4-6 weeks to undergo acceptance tests, including at least one wet dress rehearsal (WDR) and static fire. In other words, if the first of three new Falcon Heavy Block 5 boosters has just arrived in McGregor, SpaceX likely has two or three months of work to go before the entire USSF-44 rocket is on site at Florida’s Kennedy Space Center.

Just two weeks ago, a US military official revealed that SpaceX’s USSF-44 Falcon Heavy launch date had slipped from late-2020 (likely November or December) to no earlier than (NET) February 28th, 2021. The cause of the delay is unknown but either way, it should give SpaceX two full months to process Falcon Heavy Flight 4 hardware in Florida (or several weeks of margin wherever needed). After USSF-44, SpaceX’s next Falcon Heavy launch – USSF-52; also expected to fly on all-new boosters – was scheduled to launch NET “early 2021” before the preceding mission’s delay was announced. To achieve that schedule, SpaceX will likely be building and testing new Falcon Heavy boosters – and Falcon Heavy boosters only – from mid-2020 to at least Q1 2021.

The first Block 5 Falcon Heavy rocket prepares for its launch debut in April 2019. (SpaceX)

On the plus side, as NASASpaceflight.com noted, if SpaceX manages to recover all USSF-44 and USSF-52 boosters, it will quickly find itself with a fleet of six side boosters and two center cores.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla ‘Mad Max’ gets its first bit of regulatory attention

Published

on

Credit: Teslarati

Tesla “Mad Max” mode has gotten its first bit of regulatory attention, as the National Highway Traffic Safety Administration (NHTSA) has asked for additional information on the Speed Profile.

A few weeks ago, Tesla officially launched a new Speed Profile for Full Self-Driving (Supervised) known as “Mad Max,” which overtook the “Hurry” mode for the fastest setting FSD offers.

Tesla launches ‘Mad Max’ Full Self-Driving Speed Profile, its fastest yet

It launched with Full Self-Driving v14.1.2, and it was no secret that the company was looking for a new mode that would cater to more aggressive driving styles.

The release notes showed the description of the Speed Profile as:

“Introduced new speed profile MAD MAX, which comes with higher speeds and more frequent lane changes than Hurry.”

It certainly lived up to its description. In our testing, it was aggressive, fast, and drove similarly to some of the more challenging traffic patterns I’ve come across.

In normal highway driving, it was one of the quicker cars on the road, while other applications saw it be a suitable version for navigating things like rush-hour traffic.

Here’s what my experience with it was:

While Tesla owners have certainly enjoyed the feature and the behaviors of Mad Max, the NHTSA said it is in contact with Tesla about it, looking to gather additional information. Additionally, it said:

“The human behind the wheel is fully responsible for driving the vehicle and complying with all traffic safety laws.”

The important thing to note with Mad Max mode, along with the other Speed Profiles, is that the driver can choose whichever one they’d like, and they all cater to different driving styles.

While Mad Max is more aggressive, modes like “Sloth” and “Standard” are significantly more conservative and can be more suitable for those who are not comfortable with the faster, more spirited versions.

Continue Reading

News

Tesla shares AI5 chip’s ambitious production roadmap details

Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design.”

Published

on

Tesla-Chips-HW3-2
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design” that could outperform its predecessor by a notable margin. Speaking during Tesla’s Q3 2025 earnings call, Musk outlined how the chip will be manufactured in partnership with both Samsung and TSMC, with production based entirely in the United States.

What makes AI5 special

According to Musk, the AI5 represents a complete evolution of Tesla’s in-house AI hardware, building on lessons learned from the AI4 system currently used in its vehicles and data centers. “By some metrics, the AI5 chip will be 40x better than the AI4 chip, not 40%, 40x,” Musk said during the Q3 2025 earnings call. He credited Tesla’s unique vertical integration for the breakthrough, noting that the company designs both the software and hardware stack for its self-driving systems.

To streamline the new chip, Tesla eliminated several traditional components, including the legacy GPU and image signal processor, since the AI5 architecture already incorporates those capabilities. Musk explained that these deletions allow the chip to fit within a half-reticle design, improving efficiency and power management. 

“This is a beautiful chip,” Musk said. “I’ve poured so much life energy into this chip personally, and I’m confident this is going to be a winner.”

Tesla’s dual manufacturing strategy for AI5

Musk confirmed that both Samsung’s Texas facility and TSMC’s Arizona plant will fabricate AI5 chips, with each partner contributing to early production. “It makes sense to have both Samsung and TSMC focus on AI5,” the CEO said, adding that while Samsung has slightly more advanced equipment, both fabs will support Tesla’s U.S.-based production goals.

Advertisement

Tesla’s explicit objective, according to Musk, is to create an oversupply of AI5 chips. The surplus units could be used in Tesla’s vehicles, humanoid robots, or data centers, which already use a mix of AI4 and NVIDIA hardware for training. “We’re not about to replace NVIDIA,” Musk clarified. “But if we have too many AI5 chips, we can always put them in the data center.”

Musk emphasized that Tesla’s focus on designing for a single customer gives it a massive advantage in simplicity and optimization. “NVIDIA… (has to) satisfy a large range of requirements from many customers. Tesla only has to satisfy one customer, Tesla,” he said. This, Musk stressed, allows Tesla to delete unnecessary complexity and deliver what could be the best performance per watt and per dollar in the industry once AI5 production scales.

Continue Reading

Energy

Tesla VP hints at Solar Roof comeback with Giga New York push

The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.

Published

on

tesla-solar-roof-500k
Image Credit: Tesla/Twitter

Tesla’s long-awaited and way underrated Solar Roof may finally be getting its moment. During the company’s Q3 2025 earnings call, Vice President of Energy Engineering Michael Snyder revealed that production of a new residential solar panel has started at Tesla’s Buffalo, New York facility, with shipments to customers beginning in the first quarter of 2026. 

The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.

Tesla Energy’s strong demand

Responding to an investor question about Tesla’s energy backlog, Snyder said demand for Megapack and Powerwall continues to be “really strong” into next year. He also noted positive customer feedback for the company’s new Megablock product, which is expected to start shipping from Houston in 2026.

“We’re seeing remarkable growth in the demand for AI and data center applications as hyperscalers and utilities have seen the versatility of the Megapack product. It increases reliability and relieves grid constraints,” he said.

Snyder also highlighted a “surge in residential solar demand in the US,” attributing the spike to recent policy changes that incentivize home installations. Tesla expects this trend to continue into 2026, helped by the rollout of a new solar lease product that makes adoption more affordable for homeowners.

Advertisement

Possible Solar Roof revival?

Perhaps the most intriguing part of Snyder’s remarks, however, was Tesla’s move to begin production of its “residential solar panel” in Buffalo, New York. He described the new panels as having “industry-leading aesthetics” and shape performance, language Tesla has used to market its Solar Roof tiles in the past.

“We also began production of our Tesla residential solar panel in our Buffalo factory, and we will be shipping that to customers starting Q1. The panel has industry-leading aesthetics and shape performance and demonstrates our continued commitment to US manufacturing,” Snyder said during the Q3 2025 earnings call.

Snyder did not explicitly name the product, though his reference to aesthetics has fueled speculation that Tesla may finally be preparing a large-scale and serious rollout of its Solar Roof line.

Originally unveiled in 2016, the Solar Roof was intended to transform rooftops into clean energy generators without compromising on design. However, despite early enthusiasm, production and installation volumes have remained limited for years. In 2023, a report from Wood Mackenzie claimed that there were only 3,000 operational Solar Roof installations across the United States at the time, far below forecasts. In response, the official Tesla Energy account on X stated that the report was “incorrect by a large margin.”

Advertisement
Continue Reading

Trending