News
SpaceX Falcon Heavy side booster arrives at Texas test facilities
NASASpaceflight.com reports that the first new booster for SpaceX’s next Falcon Heavy launch has arrived at the company’s McGregor, Texas test facilities.
The canonical sign that SpaceX is rapidly progressing towards its next Falcon Heavy launch, the mission – set to carry the US military’s US Space Force 44 (USSF-44) satellite(s) directly to geostationary orbit (GEO) – requires all new boosters. For SpaceX, barring a major surprise in the next five months, USSF-44 will be the first operational direct-to-GEO launch in the company’s history – a milestone years and multiple test flights in the making.
US military officials have begun to at least vaguely support the idea of flying payloads on flight-proven SpaceX rockets but it looks to be a long uphill battle ahead of the company. It took almost half a decade and four-dozen successful booster landings for the US Air Force to even allow SpaceX to attempt to land a Falcon 9 booster after an operational military launch. As a result, the company will likely be building new rockets for its military launches for the indefinite future – Falcon Heavy and its three boosters included.
The photo at the top of this article shows a largely identical Falcon Heavy Block 5 side booster – either B1052 or B1053 – during a late-2018 static fire acceptance test campaign in McGregor, Texas.
Based on NASASpaceflight.com’s aerial photos of the latest rocket to arrive in McGregor, Texas, one would assume that SpaceX was simply testing a new Falcon 9 first stage. Notably, the booster appears to have a Falcon 9 interstage installed, whereas Falcon Heavy side boosters have historically been tested with nosecones installed. However, by analyzing the layout of decals visible on its exterior, author Thomas Burghardt discovered that the booster – believed to be B1064 – is likely the first of two new Falcon Heavy side boosters needed for USSF-44.
For unknown reasons, SpaceX has outfitted, transported, and prepared B1064 for acceptance testing with a years-old interstage installed, effectively making it a Falcon Heavy side booster in Falcon 9 clothing (sans nosecone).

In its current configuration, the process of manufacturing three new Falcon Heavy boosters at SpaceX’s Hawthorne, CA factory takes at least half a year from the start of tank welding to shipment. After each booster is completed, it must ship to McGregor, Texas for at least 4-6 weeks to undergo acceptance tests, including at least one wet dress rehearsal (WDR) and static fire. In other words, if the first of three new Falcon Heavy Block 5 boosters has just arrived in McGregor, SpaceX likely has two or three months of work to go before the entire USSF-44 rocket is on site at Florida’s Kennedy Space Center.
Just two weeks ago, a US military official revealed that SpaceX’s USSF-44 Falcon Heavy launch date had slipped from late-2020 (likely November or December) to no earlier than (NET) February 28th, 2021. The cause of the delay is unknown but either way, it should give SpaceX two full months to process Falcon Heavy Flight 4 hardware in Florida (or several weeks of margin wherever needed). After USSF-44, SpaceX’s next Falcon Heavy launch – USSF-52; also expected to fly on all-new boosters – was scheduled to launch NET “early 2021” before the preceding mission’s delay was announced. To achieve that schedule, SpaceX will likely be building and testing new Falcon Heavy boosters – and Falcon Heavy boosters only – from mid-2020 to at least Q1 2021.

On the plus side, as NASASpaceflight.com noted, if SpaceX manages to recover all USSF-44 and USSF-52 boosters, it will quickly find itself with a fleet of six side boosters and two center cores.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”