Connect with us
The first Block 5 version of Falcon Heavy prepares for its launch debut. The first Block 5 version of Falcon Heavy prepares for its launch debut.

News

SpaceX fires Falcon Heavy’s 27 booster engines ahead of “most difficult launch ever”

SpaceX has confirmed that Falcon Heavy Flight 3 - also known as STP-2 - is go for launch after completing a successful static fire at Pad 39A. (SpaceX)

Published

on

For the third time ever, SpaceX has successfully performed a critical static-fire test of an integrated Falcon Heavy, briefly igniting all 27 of its Merlin 1D engines to verify the health and readiness of the rocket.

Per SpaceX’s official confirmation, a “quick-look” inspection of static fire telemetry has indicated that the company’s Falcon Heavy rocket is ready for its second launch in less than three months, a milestone that could also allow both flight-proven side boosters to tie SpaceX’s own record for booster turnaround. Falcon Heavy Flight 3 is now scheduled to launch the US Air Force’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. According to SpaceX CEO Elon Musk, the mission will unequivocally be the company’s “most difficult launch ever”.

Coincidentally, on top of being Falcon Heavy’s first scheduled night launch, STP-2 has now also marked the massive rocket’s first nighttime static fire. During this critical test, Falcon Heavy briefly ignites all 27 of its three boosters’ Merlin 1Ds and throttles the engines up to full thrust, much like airliners sometimes set their brakes and throttle up before attempting to take off. The difference between Falcon Heavy and passenger aircraft is nevertheless rather significant, given that Falcon Heavy produces ~15x the thrust of an A380 – the world’s most powerful mass-produced passenger aircraft – at liftoff: 22,820 kN (5.1M lbf) to the massive jet’s meager 1,440 kN (0.3M lbf).

Despite all of that thrust, Falcon Heavy is held down during static fire by eight accurately-named hold-down clamps, themselves a part of a massive transport/erector, which is itself anchored directly to Pad 39A’s concrete foundation. In short, Falcon Heavy (and especially Falcon 9) is not going anywhere until those hold-down clamps are explicitly released. Thanks to SpaceX’s avoidance of the solid rocket boosters used by almost every other modern launch vehicle, Falcon 9 and Heavy rockets can abort at any point prior to clamp release, offering a uniquely broad abort capability.

As such, not only does SpaceX’s dedicated pre-launch static fire fully test the rocket’s health, but the same procedure is essentially repeated in the seconds before clamp release during an actual orbital launch attempt. If at any point Falcon 9’s autonomous onboard computer decides that it doesn’t like any of the thousands of channels of telemetry it’s constantly analyzing, it can command an engine shutdown and total launch abort even if all first stage engines have already ignited and reached full thrust. If routine McGregor, TX acceptance testing – also involving a full static fire – is accounted for, every single Falcon 9 booster technically completes three fully-integrated static fires before its inaugural liftoff. Falcon Heavy is slightly different, as each booster is independent test-fired in Texas but the integrated rocket can only perform static fires at Pad 39A.

A different angle of Falcon Heavy Flight 2's liftoff from Teslarati photographer Pauline Acalin. (Pauline Acalin)
The first Falcon Heavy Block 5 rocket lifts off from Pad 39A on April 11th. Both side boosters will be reused on Flight 3, also known as STP-2. (Pauline Acalin)

After those three critical tests, flight-proven Falcon boosters are subjected to the less stringent few-second static fires SpaceX performs at the launch pad 3-7 days before a given launch. With Falcon Heavy Flight 3, the rocket’s center core, upper stage, and payload fairing are all brand new, fresh from either SpaceX’s Hawthorne factory or McGregor acceptance testing. However, both side cores – Block 5 boosters B1052 and B1053 – are flight-proven, having successfully completed their first launches and landings on April 11th, less than 70 days ago.

Set by regular old Falcon 9 boosters, SpaceX’s current record for booster turnaround time (time between two launches) is 71 days (set in June 2018), while the Block 5 upgrade’s record stands at 74 days (set in October 2018). If Falcon Heavy’s STP-2 launch holds strong on June 24th, B1052 and B1053 will simultaneously tie SpaceX’s Block 5 turnaround record. This would be accomplished despite the added pressure from the US Air Force’s decision to use STP-2 as a sort of dress rehearsal for certifying all flight-proven commercial rockets, an honor (and burden) that likely added extra work, oversight, and scrutiny to the process of refurbishing and relaunching B1052 and B1053.

“[T]he US Air Force has decided that STP-2 presents an excellent opportunity to begin the process of certifying flight-proven SpaceX rockets for military launches. The STP-2-related work is more of a preliminary effort for the USAF to actually figure out how to certify flight-proven commercial rockets, but it will still be the first time a dedicated US military mission has flown on a flight-proven launch vehicle. Down the road, the processes set in place thanks – in part – to STP-2 and Falcon Heavy may also apply to aspirational rockets like Blue Origin’s New Glenn and ULA’s “SMART” proposal for Vulcan reuse.”
Teslarati.com, 06/16/2019

B1052 and B1053 landed at SpaceX Landing Zones 1 and 2 after their inaugural launches, also Falcon Heavy’s commercial debut. (SpaceX)

In a last-second surprise, SpaceX updated Falcon Heavy center core B1057’s planned drone ship landing site from a brief 40 km (25 mi) to more than 1240 km (770 mi) off the coast of Florida. SpaceX set its current record for recovery distance less than three months ago during Falcon Heavy’s commercial launch debut, in which Block 5 center core B1055 landed nearly 970 km (600 mi) offshore on drone ship Of Course I Still Love You (OCISLY). If all goes well, B1057 – the second finished Block 5 center core – will absolutely crush its predecessor’s record, implying that the booster will likely be subjected to SpaceX’s most difficult reentry and recovery yet.

For more on what CEO Elon Musk describes as “[SpaceX’s] most difficult launch ever”, check out these previous articles on an unexpected ultra-fast booster reentry and the extraordinary challenge facing Falcon upper stage.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading