News
SpaceX-launched Uranus mission a top priority of new decadal survey
The National Academies of Sciences, Engineering, and Medicine have published their latest decadal survey of planetary science and astrobiology, revealing a recommendation that NASA prioritize the development of a flagship mission to Uranus baselined to launch on SpaceX’s Falcon Heavy rocket.
Known as the Uranus Orbiter and Probe or UOP, the mission proposal has been under development by a team of NASA, University of California, and Johns Hopkins University scientists and engineers for several years. In fact, a very similar concept ranked third in the Academies’ 2013-2022 decadal survey flagship recommendations, reiterating its central importance and potential value in the eyes of the survey’s dozens of contributors. According to its creators, in its latest iteration, the Uranus Orbiter and Probe have the potential to fully or partially answer 11 of the 12 primary questions the latest Decadal Survey structured itself around.
Additionally, the survey indirectly states that if it weren’t for the existence of one specific technology, it would have been a wash between a mission to Uranus or Neptune. That keystone: SpaceX’s Falcon Heavy rocket.
While the survey’s authors don’t explicitly point to SpaceX in the context of UOP, they do state that “a Uranus mission is favored because an end-to-end mission concept exists that can be implemented in the 2023-2032 decade on currently available launch vehicles.” In reality, there only appears to be one launch vehicle: Falcon Heavy. Three other alternatives do technically exist: United Launch Alliance’s (ULA) Vulcan Centaur, Blue Origin’s New Glenn, and NASA’s own Space Launch System (SLS).
NASA’s Europa Clipper orbiter – originally manifested on SLS but later moved to SpaceX’s Falcon Heavy to avoid major launch delays – has helped demonstrate that SLS isn’t viable for non-Artemis Program missions without massive production improvements and significant workarounds or design changes. While capable in many regards, Blue Origin’s reusable New Glenn rocket appears to have extremely poor performance beyond Earth orbit – well below what UOP requires – and is unlikely to launch before 2024 or 2025. It’s possible that an expendable New Glenn could suffice but Blue Origin has never mentioned the option and, even then, the rocket’s expendable performance could still fall short.


Finally, ULA’s expendable Vulcan Centaur rocket has yet to launch and its debut could easily slip into 2023. More importantly, according to official information provided by the company to a NASA-run performance calculator, even Vulcan’s most capable variant (VC6) with six solid rocket boosters (SRBs) simply doesn’t have the performance required to launch the Uranus Orbiter and Probe (7235 kg / 15,950 lb) on seven of the mission’s preferred trajectories. For three other secondary windows, Vulcan could potentially launch UOP but only with the inclusion of a Venus gravity assist that would require significant design changes to protect the spacecraft while traveling much closer to the sun.
According to NASA’s calculator, a fully-expendable Falcon Heavy rocket with a standard payload fairing could launch around 8.5-10 tons (18,700-22,000 lb) to UOP’s preferred trajectories, leaving a very healthy margin for spacecraft weight gain or launch underperformance and likely enabling a longer launch window for each opportunity.


If NASA agrees with the survey’s conclusions, decides to develop the Uranus Orbiter and Probe, and also plans on the Academies’ optimistic assumption of an ~18% budget increase on average from 2023 to 2032, work towards a preferred 2031 launch window could begin in earnest as early as 2024. Comprised of a namesake Orbiter and Probe, UOP would arrive in orbit around Uranus in late 2044 or early 2045 weighing around five metric tons (~11,000 lb). The primary science mission would begin by deploying a small atmospheric probe to directly analyze the composition and behavior of the planet’s exotic atmosphere, which is believed to be volatile, prone to vast and violent storms, and host to some of the most extreme winds in the solar system. The probe would weigh ~270 kilograms (~600 lb) and is only expected to survive for a few hours at most.
The orbiter, however, would continue on to tour the Uranian system for at least four years, observing and studying the ice giant and its rings, magnetosphere, and 27+ moons. Uranus itself resides in what may be the most common class of exoplanets in the universe, making a close study of it invaluable for exoplanet science as a whole. It’s also possible that – like several moons around Saturn and Jupiter – one or more Uranian moons have liquid water oceans created by tidal heating, adding to the list of extraterrestrial bodies that might feature habitable environments or alien life.
News
Tesla Robotaxi Safety Monitor seems to doze off during Bay Area ride
We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.
A Tesla Robotaxi Safety Monitor appeared to doze off during a ride in the California Bay Area, almost ironically proving the need for autonomous vehicles.
The instance was captured on camera and posted to Reddit in the r/sanfrancisco subreddit by u/ohmichael. They wrote that they have used Tesla’s ride-hailing service in the Bay Area in the past and had pleasant experiences.
However, this one was slightly different. They wrote:
“I took a Tesla Robotaxi in SF just over a week ago. I have used the service a few times before and it has always been great. I actually felt safer than in a regular rideshare.
This time was different. The safety driver literally fell asleep at least three times during the ride. Each time the car’s pay attention safety alert went off and the beeping is what woke him back up.
I reported it through the app to the Robotaxi support team and told them I had videos, but I never got a response.
I held off on posting anything because I wanted to give Tesla a chance to respond privately. It has been more than a week now and this feels like a serious issue for other riders too.
Has anyone else seen this happen?”
My Tesla Robotaxi “safety” driver fell asleep
byu/ohmichael insanfrancisco
The driver eventually woke up after prompts from the vehicle, but it is pretty alarming to see someone like this while they’re ultimately responsible for what happens with the ride.
We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.
They should have probably left the vehicle immediately.
Tesla’s ride-hailing service in the Bay Area differs from the one that is currently active in Austin, Texas, due to local regulations. In Austin, there is no Safety Monitor in the driver’s seat unless the route requires the highway.
Tesla plans to remove the Safety Monitors in Austin by the end of the year.
News
Tesla opens Robotaxi access to everyone — but there’s one catch
Tesla has officially opened Robotaxi access to everyone and everyone, but there is one catch: you have to have an iPhone.
Tesla’s Robotaxi service in Austin and its ride-hailing service in the Bay Area were both officially launched to the public today, giving anyone using the iOS platform the ability to simply download the app and utilize it for a ride in either of those locations.
It has been in operation for several months: it launched in Austin in late June and in the Bay Area about a month later. In Austin, there is nobody in the driver’s seat unless the route takes you on the freeway.
In the Bay Area, there is someone in the driver’s seat at all times.
The platform was initially launched to those who were specifically invited to Austin to try it out.
Tesla confirms Robotaxi is heading to five new cities in the U.S.
Slowly, Tesla launched the platform to more people, hoping to expand the number of rides and get more valuable data on its performance in both regions to help local regulatory agencies relax some of the constraints that were placed on it.
Additionally, Tesla had its own in-house restrictions, like the presence of Safety Monitors in the vehicles. However, CEO Elon Musk has maintained that these monitors were present for safety reasons specifically, but revealed the plan was to remove them by the end of the year.
Now, Tesla is opening up Robotaxi to anyone who wants to try it, as many people reported today that they were able to access the app and immediately fetch a ride if they were in the area.
We also confirmed it ourselves, as it was shown that we could grab a ride in the Bay Area if we wanted to:
🚨 Tesla Robotaxi ride-hailing Service in Austin and the Bay Area has opened up for anyone on iOS
Go download the app and, if you’re in the area, hail a ride from Robotaxi pic.twitter.com/1CgzG0xk1J
— TESLARATI (@Teslarati) November 18, 2025
The launch of a more public Robotaxi network that allows anyone to access it seems to be a serious move of confidence by Tesla, as it is no longer confining the service to influencers who are handpicked by the company.
In the coming weeks, we expect Tesla to then rid these vehicles of the Safety Monitors as Musk predicted. If it can come through on that by the end of the year, the six-month period where Tesla went from launching Robotaxi to enabling driverless rides is incredibly impressive.
News
Tesla analyst sees Full Self-Driving adoption rates skyrocketing: here’s why
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla analyst Stephen Gengaro of Stifel sees Full Self-Driving adoption rates skyrocketing, and he believes more and more people will commit to paying for the full suite or the subscription service after they try it.
Full Self-Driving is Tesla’s Level 2 advanced driver assistance suite (ADAS), and is one of the most robust on the market. Over time, the suite gets better as the company accumulates data from every mile driven by its fleet of vehicles, which has swelled to over five million cars sold.
The suite features a variety of advanced driving techniques that many others cannot do. It is not your typical Traffic-Aware Cruise Control (TACC) and Lane Keeping ADAS system. Instead, it can handle nearly every possible driving scenario out there.
It still requires the driver to pay attention and ultimately assume responsibility for the vehicle, but their hands are not required to be on the steering wheel.
It is overwhelmingly impressive, and as a personal user of the FSD suite on a daily basis, I have my complaints, but overall, there are very few things it does incorrectly.
Tesla Full Self-Driving (Supervised) v14.1.7 real-world drive and review
Gengaro, who increased his Tesla price target to $508 yesterday, said in an interview with CNBC that adoption rates of FSD will increase over the coming years as more people try it for themselves.
At first, it is tough to feel comfortable with your car literally driving you around. Then, it becomes second nature.
Gengaro said:
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla Full Self-Driving take rates also have to increase as part of CEO Elon Musk’s recently approved compensation package, as one tranche requires ten million active subscriptions in order to win that portion of the package.
The company also said in the Q3 2025 Earnings Call in October that only 12 percent of the current ownership fleet are paid customers of Full Self-Driving, something the company wants to increase considerably moving forward.