News
SpaceX’s next Falcon Heavy rocket on track for early 2023 launch
Two weeks after SpaceX’s first Falcon Heavy launch in three and a half years, the US Space Force says that the rocket is on track to launch again “early next year.”
Immediately before and after Falcon Heavy’s first operational launch for the US Space Force, the Space Systems Command confirmed that the massive SpaceX rocket’s next military launch – USSF-67 – was scheduled no earlier than January 2023. The military also confirmed that USSF-67 would reuse two of the three Falcon Heavy boosters that helped launch USSF-44 on November 1st.
Two weeks later, the US Space Force’s tone hasn’t changed, and the Space Systems Command remains confident that Falcon Heavy is on track to launch USSF-67 less than three months after USSF-44.
Assuming the lack of a schedule change is intentional rather than a matter of not checking with SpaceX or other US stakeholders, no change is a good sign. Since the last time the SSC reported that USSF-67 was on track to launch in January 2023, SpaceX successfully launched its fourth Falcon Heavy rocket. USSF-44 was the company’s first launch directly into a geosynchronous orbit ~36,000 kilometers (~22,300 mi) above Earth’s surface.
SpaceX successfully recovered both of Falcon Heavy’s ‘side cores’ and has likely had enough time to thoroughly inspect each booster and begin the refurbishment process. If data gathered from the launch, landing, or recovered boosters uncovered issues with Falcon Heavy’s performance during USSF-44, USSF-67 would almost certainly be delayed. The chances of a delay are magnified by the fact that USSF-67 can’t launch until two of USSF-44’s Falcon Heavy boosters are refurbished and declared ready for a second flight.
But it appears that even a gap of 40 months between Falcon Heavy launches wasn’t enough to make SpaceX falter – at least after working out some prelaunch kinks. SpaceX accomplished a similar feat – launching two Falcon Heavy rockets in less than three months with one pair of side boosters – on the rocket’s second and third launches in April and June 2019. The mission that reused Flight 2’s side boosters was for the US Air Force, so SpaceX and the military already have direct experience tackling those challenges.
In the three and a half years since, SpaceX has gained a huge amount of experience recovering and refurbishing Falcon 9 Block 5 boosters and slashed its record turnaround (the time between two launches of the same booster) from 74 days to 21 days. SpaceX should thus have no issue turning Falcon Heavy side boosters B1064 and B1065 around for a second launch in January 2023, around 60 to 91 after their debut.


While preparing one Falcon Heavy rocket to launch USSF-67 in January, SpaceX – at least according to customer ViaSat – may also be preparing another Falcon Heavy rocket to launch the first ViaSat-3 satellite the same month. Unlike the US Space Force, which recently shipped [PDF] one of USSF-67’s payloads to Florida, ViaSat has yet to ship its first next-generation satellite to the launch site and says that milestone is scheduled for December 2022. That makes a February or March launch much more likely, but ViaSat recently told shareholders that ViaSat-3 remains on track to launch “in the earliest part of” Q1 2023.
Combined, USSF-67 and ViaSat-3 are scheduled to reuse Falcon Heavy side boosters B1064, B1065, B1052, and B1053. Each will use a brand new center core: B1068 for ViaSat-3 and B1079 for USSF-67, according to Next Spaceflight. Like USSF-44, which was the first time SpaceX intentionally expended a Falcon Heavy booster, both new center cores are expected to be expended.
For several reasons, assembling and preparing Falcon Heavy for launch is significantly more time-consuming than Falcon 9, so there will likely be at least a two, three, or even four-week gap between Falcon Heavy’s next two launches. But as long as USSF-67 and ViaSat-3 are ready to fly during narrow windows in early and late January, it appears that SpaceX could launch two Falcon Heavy rockets in one calendar month.
SpaceX has as many as five Falcon Heavy launches scheduled in 2023 – a stark change after more than three years without a single flight.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.