News
SpaceX urges White House to foster public-private partnerships in space
Earlier this year, the White House announced plans to reestablish the National Space Council (NSC), an advising body that dates back to the creation of NASA in 1958. The council convened for the first time on October 5 and invited several central figures in US spaceflight, including SpaceX’s President and COO Gwynne Shotwell.
In a brief but powerful speech to the Council, Shotwell urged the US Federal government to apply the lessons learned from NASA’s successful private-public partnerships to efforts to expand human presence in Low Earth Orbit and beyond. Those successful partnerships include NASA COTS (Commercial Orbital Transportation Services), which funded SpaceX to develop its Cargo Dragon spacecraft to resupply the ISS, and the Commercial Crew Program (CCP) that funded SpaceX for the development of their crewed Dragon 2 spacecraft. In terms of efficiency and speed, both programs have indeed been extraordinarily successful, despite often maligned delays.
As a brief example of the insignificance of SpaceX’s Commercial Crew delays, one needs to look no further than NASA’s Space Launch System. Described in early 2011 to be pursuing operational readiness no later than December 2016, SLS is now extremely unlikely to conduct its first launch until well into 2020. A reasonable cost estimate spreads the development costs ($30 billion) over 30 years of operations, assumes an optimistic one launch per year for the vehicle, and arrives at an astounding final figure of $5 billion per SLS launch.
The development funds NASA awarded SpaceX for both Cargo Dragon, Falcon 9, and Crew Dragon were estimated to be no more than $7.3 billion from 2006 to the last Cargo Dragon mission currently scheduled for 2024. Even if this figure swells to $10 billion once operational crewed flights to the ISS begin in 2018 or 2019, the entire cost of NASA’s support of SpaceX would equate to two launches of SLS total.

NASA slipped a sly glimpse of Dragon 2 construction into their live coverage SpaceX’s CRS-12 launch. On the left is a Dragon 2 pressure vessel, while on the right is the vehicle’s “trunk”. (NASA)
Shotwell made sure to avoid the topic of SLS entirely, instead choosing to highlight the benefits of cost and speed public-private partnerships could provide for deep space communications and interplanetary cargo transport. This marks the second time that a ranking member of SpaceX has mentioned a possible public-private program for deep space communications, something that will inevitably need to improve as the commercial spaceflight apparatus extends its reach beyond Earth. SpaceX is currently developing satellite technology to enable a massive orbital Internet constellation around Earth, and the company is obviously interested in leveraging that R&D to strengthen Earth-Mars and Earth-Moon networks into a more robust communications backbone. Secretary of Transport Elaine Chao and Secretary of State Rex Tillerson also slipped in words of excitement and interest in SpaceX’s recently revealed concept of point to point Earth transportation with their BFR system.
This meeting of the NSC also focused heavily on the domestic and regulatory apparatus for commercial space operations. Shotwell and Blue Origin’s CEO Bob Smith both suggested that the FAA’s current rules and regulations regarding commercial spaceflight ought to be reviewed and potentially updated to better account for a future of reusable commercial launch vehicles. Shotwell subtly maligned the often-tedious process of applying for FAA launch permits, pointing to the fact that even slight changes to permits would force companies to file entirely new applications, often taking six months or longer. SpaceX, with its rapid development and deployment of reusable rockets and an ever-increasing launch cadence, is more than ever before at odds with the FAA’s slow and unforgiving permitting processes.

SpaceX’s BFR Earth transport concept would undoubtedly clash head-on with the FAA’s current system of rocket regulations. (SpaceX)
Intriguingly, Council members Mike Pence, Mick Mulvaney, and Elaine Chao all expressed a desire to ease the burden of anachronistic regulations on the commercial space industry. More interesting still, the commercial space panel ended with what effectively sounded like a handshake deal between the Vice President, the Secretary of Transportation, and the Director of the Office of Management and Budget to review current commercial spaceflight regulations and report the results of those reviews to the NSC in no more than 45 days.
It remains to be seen if this verbal commitment translates into an official review, but it is at a minimum encouraging to hear ranking members of the current White House administration so openly express support for SpaceX, Blue Origin, Sierra Nevada Corp., and American commercial spaceflight in general.
The First Meeting of the National Space Council can be seen in the embed below.
https://www.youtube.com/watch?v=nh2jVG76S7g
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.