News
SpaceX set for rocket recovery first after US military satellite launch
A SpaceX Falcon 9 is set to become the first commercial rocket to attempt to land after an operational launch for the US military, potentially paving the way for an even more significant milestone somewhere down the road.
Featuring brand new booster B1060 and a new upper stage and payload fairing, Falcon 9 is scheduled to launch the US military’s third upgraded GPS III satellite (PS III SV01) no earlier than (NET) 3:55 pm EDT (19:55 UTC) on June 30th. While it will be the second time a Falcon 9 Block 5 rocket has lifted off from Cape Canaveral Air Force Station (CCAFS) Launch Complex 40 (LC-40) with a GPS III satellite in tow, the mission will mark a critical first for SpaceX and the US military. For the first GPS III mission, the US Air Force somewhat inexplicably required SpaceX to expend the new Falcon 9 booster assigned to the December 2018 launch.
The US military never offered a technical explanation for why Falcon 9 couldn’t land after launching a ~3900 kg (~8600 lb) GPS III SV01 to a medium orbit but could, for example, land after launching a dozen metric tons and two NASA astronauts. Regardless, the US Air Force Space and Missile Systems Command (SMC) has decided that SpaceX can now attempt to land Falcon 9’s first stage during the company’s second GPS III launch. A step further, on the eve of the mission, SMC has revealed that it may even be opening up to the idea of reusing SpaceX boosters on future military launches.

Falcon 9 B1060 has a 15-minute window to launch the GPS III SV03 spacecraft on Tuesday, June 30th. Meanwhile, drone ship Just Read The Instructions (JRTI) – heading out to sea to prepare for B1060’s attempted landing – recently passed just a few miles from drone ship Of Course I Still Love You (OCISLY) – returning to Port Canaveral after SpaceX decided to delay its ninth Starlink v1.0 launch from June 23rd. 25th, and 26th to the first or second week of July.
JRTI arrived at its post ~630 km (~390 mi) East of the Florida Coast on June 29th, around 36 hours before liftoff.
Drone ship JRTI was recently recommissioned after extensive upgrades and a several thousand mile move from Port of Los Angeles, California to Port Canaveral, Florida, ultimately supporting its first East Coast booster landing and recovery barely three weeks ago. If successful, B1060 will become the first orbital-class booster ever to land after an operational US military launch, excluding a number of Space Shuttle missions in the 1980s.

According to reporting by Space News’ Sandra Erwin, it’s unlikely that SpaceX will reserve Falcon 9 booster B1060 – assuming a successful landing – for reuse on a future US military launch. Given that SMC appears to have even stricter requirements than NASA’s Commercial Crew (CCP) and Commercial Resupply Services (CRS) programs, it’s safe to assume that – like NASA – the US military will only initially allow booster reuse if said booster has only flown missions for the agency. Given that Falcon 9’s next known US military launch (GPS III SV04) is NET “late 2020” and that there “are currently no plans to use a previously-flown booster on any future GPS launches”, it’s unlikely that SpaceX will waste a perfectly good booster by saving it for 6-18+ months.
Regardless, as usual, SpaceX will host an uninterrupted webcast of the launch. Tune in around 15 minutes prior to catch SpaceX’s third launch of the month and 11th of the year.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.