Connect with us

News

SpaceX schedules first West Coast Starlink launch after a quiet July

Published

on

Spaceflight Now reports that SpaceX has scheduled Starlink’s West Coast launch debut no earlier than August 10th, a mission that will also mark the company’s first launch in almost six weeks.

SpaceX completed its latest Falcon 9 launch – and 20th launch of 2021 – on June 30th, successfully deploying dozens of customer small satellites and three Starlink spacecraft as part of its second dedicated Smallsat Program ‘Transporter’ mission. Since then, the United States’ Eastern Range has been eerily quiet – as if in the eye of the storm that is SpaceX’s 2021 launch manifest. While there has been no official word one way or another, it’s been speculated that the range entered a period of routine – if inconvenient – maintenance that can often last weeks and during which no launches are possible.

Scheduled to launch no earlier than July 30th, Boeing’s second attempt at an uncrewed Orbital Flight Test (OFT-2) of its Starliner crew capsule will apparently punctuate the end of that maintenance period and a return to regular operations for SpaceX. In the meantime, Spaceflight Now’s sources suggest that the company has been making the most of its downtime.

In the last two months, SpaceX has shipped two record-breaking Falcon 9 boosters – collectively responsible for 19 orbital-class launches in the last three years – from Florida to its Vandenberg Air/Space Force Base (VAFB), California launch facilities. Drone ship Of Course I Still Love You (OCISLY) wrapped up an 8000 kilometer (~5000 mi) journey from its Florida home to California’s Port of Long Beach, while brand new drone ship A Shortfall of Gravitas (ASOG) arrived at Port Canaveral to take OCISLY’s place after months of assembly.

All are part of an effort to prepare for an even busier second half of 2021. According to Spaceflight Now, H2 will begin no earlier than August 10th for SpaceX with Starlink’s first dedicated polar launch (known as “Starlink 2-1”) and the first Falcon 9 mission out of Vandenberg in nine months. Combined, Falcon 9 boosters B1049 and B1051 and drone ship OCISLY should be more than capable of pushing SpaceX’s SLC-4E pad to its limits, maxing out around one launch per month for the foreseeable future.

Last month, SpaceX FCC filings also revealed plans for a number of new dedicated Starlink launches from its Cape Canaveral LC-40 pad – unexceptional if it weren’t for the fact that details in the documents implied that those upcoming missions will also be targeting polar orbits. In other words, after successfully launching more than 1600 operational Starlink satellites into mid-inclination equatorial orbits, SpaceX now appears to be laser-focused on building out the constellation’s polar ‘shell.’

Comprised of ~1100 satellites, that polar shell will ultimately give Starlink the ability to deliver internet to aircraft and ships virtually anywhere on Earth – two established connectivity markets that are ripe for disruption. To do so, however, most or all polar Starlink satellites will need optical interlinks – lasers that allow spacecraft to route communications in space and serve customers beyond the reach of land-based ground stations. Thus far, excluding two early 2018 prototypes, SpaceX has launched 13 Starlink satellites with prototype laser links.

Advertisement
-->
SpaceX’s first ten space laser Starlink prototypes. (SpaceX)

CEO Elon Musk has stated that Starlink V2 satellites are set to debut in 2022 and will all have optical interlinks. However, the upcoming “Starlink 2-1” mission’s internal name does raise the question of whether it’s referring to the start of a new constellation ‘shell,’ the first batch of V2 satellites, or both. SpaceX job postings have also hinted at “Starlink V1.5” satellites, which could potentially be as simple as existing V1 satellites outfitted with laser links.

Ultimately, only time, SpaceX, or Elon Musk will tell and the company’s first dedicated Starlink launch is scheduled as few as two weeks from now.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading