News
SpaceX schedules first West Coast Starlink launch after a quiet July
Spaceflight Now reports that SpaceX has scheduled Starlink’s West Coast launch debut no earlier than August 10th, a mission that will also mark the company’s first launch in almost six weeks.
SpaceX completed its latest Falcon 9 launch – and 20th launch of 2021 – on June 30th, successfully deploying dozens of customer small satellites and three Starlink spacecraft as part of its second dedicated Smallsat Program ‘Transporter’ mission. Since then, the United States’ Eastern Range has been eerily quiet – as if in the eye of the storm that is SpaceX’s 2021 launch manifest. While there has been no official word one way or another, it’s been speculated that the range entered a period of routine – if inconvenient – maintenance that can often last weeks and during which no launches are possible.
Scheduled to launch no earlier than July 30th, Boeing’s second attempt at an uncrewed Orbital Flight Test (OFT-2) of its Starliner crew capsule will apparently punctuate the end of that maintenance period and a return to regular operations for SpaceX. In the meantime, Spaceflight Now’s sources suggest that the company has been making the most of its downtime.
In the last two months, SpaceX has shipped two record-breaking Falcon 9 boosters – collectively responsible for 19 orbital-class launches in the last three years – from Florida to its Vandenberg Air/Space Force Base (VAFB), California launch facilities. Drone ship Of Course I Still Love You (OCISLY) wrapped up an 8000 kilometer (~5000 mi) journey from its Florida home to California’s Port of Long Beach, while brand new drone ship A Shortfall of Gravitas (ASOG) arrived at Port Canaveral to take OCISLY’s place after months of assembly.
All are part of an effort to prepare for an even busier second half of 2021. According to Spaceflight Now, H2 will begin no earlier than August 10th for SpaceX with Starlink’s first dedicated polar launch (known as “Starlink 2-1”) and the first Falcon 9 mission out of Vandenberg in nine months. Combined, Falcon 9 boosters B1049 and B1051 and drone ship OCISLY should be more than capable of pushing SpaceX’s SLC-4E pad to its limits, maxing out around one launch per month for the foreseeable future.
Last month, SpaceX FCC filings also revealed plans for a number of new dedicated Starlink launches from its Cape Canaveral LC-40 pad – unexceptional if it weren’t for the fact that details in the documents implied that those upcoming missions will also be targeting polar orbits. In other words, after successfully launching more than 1600 operational Starlink satellites into mid-inclination equatorial orbits, SpaceX now appears to be laser-focused on building out the constellation’s polar ‘shell.’
Comprised of ~1100 satellites, that polar shell will ultimately give Starlink the ability to deliver internet to aircraft and ships virtually anywhere on Earth – two established connectivity markets that are ripe for disruption. To do so, however, most or all polar Starlink satellites will need optical interlinks – lasers that allow spacecraft to route communications in space and serve customers beyond the reach of land-based ground stations. Thus far, excluding two early 2018 prototypes, SpaceX has launched 13 Starlink satellites with prototype laser links.

CEO Elon Musk has stated that Starlink V2 satellites are set to debut in 2022 and will all have optical interlinks. However, the upcoming “Starlink 2-1” mission’s internal name does raise the question of whether it’s referring to the start of a new constellation ‘shell,’ the first batch of V2 satellites, or both. SpaceX job postings have also hinted at “Starlink V1.5” satellites, which could potentially be as simple as existing V1 satellites outfitted with laser links.
Ultimately, only time, SpaceX, or Elon Musk will tell and the company’s first dedicated Starlink launch is scheduled as few as two weeks from now.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.