Connect with us

News

SpaceX’s flight-proven Falcon 9 and drone ship fleet ready for duo of launches

Published

on

SpaceX is gearing up for a duo of flight-proven Falcon 9 launches and drone ship landings on both coasts of the United States, set for liftoff from Cape Canaveral’s Kennedy Space Center and Vandenberg Air Force Base no earlier than (NET) November 15th and 19th, respectively.

East Coast activities

On the East Coast, drone ship Of Course I Still Love You departed from Port Canaveral late last night (Nov 11) as Falcon 9 B1047 rolled onto Pad 39A for a preflight static fire test, where the rocket will be filled with a full complement of fluids (TEA/TEB, helium, nitrogen, oxygen, kerosene) and all nine Merlin 1D engines are ignited in order to replicate the seconds just prior to a real launch. That static fire test was originally expected to occur on November 10 or 11 but has obviously been pushed back a day to Nov. 12, likely meaning that the rocket’s launch – carrying Qatari communications satellite Es’hail-2 – will slip 24 hours to 3:46pm EST (08:46 UTC) on the 16th,

Following the unfortunate loss of Amos-6 during a preflight static fire in September 2016, SpaceX has since made a reasonable move away from performing static fires with payloads integrated atop the rocket, unless the customer specifically requests that it be done that way to save time. As such, Falcon 9 must be brought horizontal, rolled back to the hangar, inspected, and finally have the payload and fairing attached to the rocket, a sensitive process that demands nuance and time. Combined with an analysis of data gathered during the static fire, this process – when all goes as planned – can take at least 48 hours from start to finish, and longer still if any minor off-nominal behavior is observed or the launch customer has additional requirements (typically reserved for NASA and national security-related missions).

Advertisement
-->

 

Because rockets like Falcon 9 are extraordinarily intricate and finely-tuned machines, perfectly nominal launch-related events are few and far between. In reality, the time between static fire rollout and launch readiness is rarely less than three days (72 hours), not including the process of rolling the fully-integrated rocket back out to the pad, aligning and securing the vehicle and transporter-erector (TE) over the flame trench, and finally attaching all umbilical connections and verifying vehicle health. Speaking generally, four to five days is a good rule of thumb for the time it takes to complete Falcon 9’s static fire and return the rocket to the pad after attaching the payload.

Still, it’s always a good sign when a drone ship leaves port, much like OCISLY did on the evening of the 11th. The journey to its destination will take 2-3 days, meaning that the drone ship will be ready to catch Falcon 9 whenever the rocket is ready to launch.

A sooty booster – assumed to be B1047.2 – rolled out to Pad 39A on Sunday morning Eastern time. (Tom Cross)

Drone ships and sooty rockets, oh my!

On the West Coast, SpaceX is also getting ready for drone ship Just Read The Instructions (JRTI) to depart Port of San Pedro in anticipation of a presumed sea recovery of Falcon 9 following the NET Nov 19 launch of a multi-satellite rideshare mission known as SSO-A. While SpaceX currently holds two recovery licenses for the booster, one by sea and one at the land-based LZ-4 pad, it’s possible that the company will be forced to use JRTI despite the fact that Falcon 9 will have plenty of propellant left to return itself to the launch site (RTLS). United Launch Alliance’s (ULA) next Delta IV Heavy rocket is currently on-pad with a presumably very expensive National Reconnaissance (NRO) satellite attached roughly 1.5 miles northeast of SpaceX’s LZ-4 – the rest of the gaps are easy enough to fill in.

 

JRTI was spotted by Teslarati photographer Pauline Acalin performing some rare sea trials on November 10 after spending several weeks berthed at port for routine maintenance and deck repairs. Fairing recovery vessel Mr. Steven has also been undergoing some unusual modifications, now proudly sporting what can only be described as a steel horn recently installed on the tip of his bow deck. After sitting out a catch attempt during the launch of SAOCOM 1A to prepare for controlled helicopter drop tests performed over a period of several weeks in October, Mr. Steven will most likely be ready for another stab at operational fairing recovery during SSO-A.

Advertisement
-->

Both rockets – B1047 to the East and (presumed) B1046 to the West – are flight-proven, meaning that they have flown operational orbital missions prior to their upcoming launch attempts, B1047 launched communications satellite Telstar 19V in July 2018, while B1046 has actually performed two successful launches already, Bangabandhu-1 in May and Telkom 4 (Merah Putih) in August.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading