Connect with us

News

SpaceX’s fourth Starship prototype has begun to take shape in Florida

In the center of this image, atop a newly-constructed metal-framework mount, is likely the first steel ring of Starship's Mk4 prototype. (John Winkopp - Seamore Holdings)

Published

on

SpaceX’s Florida Starship team appears to have taken the first step towards assembling Starship Mk4, the fourth full-scale prototype of the next-generation spaceship.

Although SpaceX’s Boca Chica, Texas Starship campus is undeniably in the lead with their first prototype, Starship Mk1, it appears that the company’s Florida campus is far ahead of Texas with their second Starship prototype.

At the moment, SpaceX has set up two separate Starship build teams in Florida and Texas with the intention of creating a sort of internal competition to see which group’s Starships are first to flight and first to orbit. For the most part, it’s assumed that this “competition” is less a fight to the finish line than it is an A/B test, a common software development practice in which separate teams pursue different methods of achieving the same goals.

In the likely event that SpaceX is performing a radical form of A/B testing with rocket prototypes, both teams are continuously sharing best-practices and lessons-learned as they work to find the best possible methods for fabricating hardware and assembling Starships. Nevertheless, in A/B testing, fundamentally different approaches also tend to result in development schedules and final products that are unique, even if the end results are similar.

In the context of Starship, this is exactly what can be observed at SpaceX’s Florida and Texas facilities. Similarities abound in the radical method of en plein air manufacturing being implemented, while the Starship Mk1 and Mk2 hardware being built and assembled are also relatively similar, even if they have some distinct characteristics.

For example, it’s been observed that Starship Mk2 has almost certainly been constructed out of steel rings that are significantly taller than those used to assemble Starship Mk1. Taller rings meant that Mk2 needed fewer overall rings to reach the same height as Mk1, a fact that likely contributed to the impressive speed with which SpaceX’s Florida team was able to stack and weld most of Starship Mk2’s aerostructure.

Star(ship)fleet

According to SpaceX CEO Elon Musk, those similarities (and slight differences) are likely to continue for at least several more generations of prototypes. At a September 28th presentation and update on Starship, Musk revealed his opinion that Starship could be ready for its first orbital test flight(s) as few as six months from then – sometime in Q2 2020, give or take. To get there, Musk estimated that at least 5-6 Starship prototypes would need to be built in the interim.

Starship Mk3 will be built in Texas – in fact, the first ‘seamless’ steel ring may have already been fabricated at SpaceX’s Boca Chica facilities. According to Musk, Starship Mk4 will be SpaceX Cocoa’s second prototype. Based on John Winkopp’s October 17th drone overview, it appears that SpaceX’s Florida team has mounted the first steel Starship Mk4 ring atop a new work mount, potentially marking the start of Starship Mk4 assembly.

Although it’s unclear if this is a proof of concept or something more substantial, what could be the first seamless steel ring of Starship’s Mk3 prototype has already been bent into shape in Boca Chica, Texas. (NASASpaceflight – bocachicagal)

SpaceX’s Texas team has prepared at least one full-scale sample of a single-weld (‘seamless’) steel ring, perhaps the start of Mk1’s successor, Starship Mk3. Meanwhile, SpaceX Cocoa – seemingly at some kind of impasse with the final integration and assembly of Starship Mk2 – has churned out a huge number of similarly smooth steel rings, to the extent that Teslarati previously (and incorrectly) surmised that the first Super Heavy booster was being fabricated.

During Musk’s September 28th presentation, he effectively confirmed that the almost two-dozen steel rings hanging out on SpaceX’s Cocoa, Florida campus were almost certainly the beginnings of Starship Mk4. However, given the sheer number of rings present (23), the reality is that what could be the entirety of Starship Mk4’s cylindrical tank and thrust structure section is probably sitting outside in Florida, waiting to be stacked. Altogether, those 23 rings could reach a height of more than 40m (130 ft), potentially more than is actually needed for a Starship tank section.

Of note, it’s been observed that SpaceX’s Florida campus has begun stacking individual Mk4 rings into dual-ring assemblies, potentially halving the amount of welding that will have to be done once stacking begins in earnest. (John Winkopp – Seamore Holdings, LLC)

Last but not least, local photographer and spaceflight fan Jon Van Horne captured what looks like a new Starship tank dome in work at SpaceX’s prospective Kennedy Space Center (KSC) build site, known as Roberts Rd. Given that Starship Mk2 already has two domes installed and a third and final dome staged and ready for installation, this fourth dome is very likely the first for Starship Mk4.

https://twitter.com/therealjonvh/status/1183176543914336258

In short, SpaceX’s Florida team is probably weeks ahead of Boca Chica in the process of building a second full-scale Starship prototype. Of course, the ultimate winner of this mock competition isn’t Florida or Texas, it’s SpaceX’s Starship program as a whole.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading