Connect with us

News

SpaceX’s Starhopper readies for more ambitious Raptor-powered flight tests

On June 1st, SpaceX technicians began installing a new Raptor - this time SN04 - on Starhopper. (NASASpaceflight - bocachicagal)

Published

on

For the second time in two months, SpaceX technicians have begun to install a Raptor engine on Starhopper, a full-scale Starship testbed theoretically capable of low-velocity, moderate-altitude ‘hops’.

Back in late March, Raptor and Starhopper were joined for the first time, enabling a lengthy series of attempted tests that were followed by two engine ignitions and tethered hops before Raptor was removed for inspection. In the two months since that first round of integrated testing, SpaceX has significantly upgraded Starhopper and its spartan launch facilities, all focused on transforming the odd vehicle from a largely fixed test stand into a giant, mobile Grasshopper.

All the way back in 2012, SpaceX began testing Falcon 9 recovery and reusability concepts with a low-fidelity prototype known as Grasshopper – essentially a minimalist Falcon 9 first stage with ad hoc legs and a single Merlin engine. It supported a series of 8 major test flights – all successful and a source of valuable data – before the vehicle’s 2013 retirement. An upgraded Grasshopper – known instead as Falcon 9 Reusable Development Vehicle (F9R Dev1) – began testing around the same time and continued even higher altitude vertical takeoff/vertical landing (VTVL) tests until its untimely demise in August 2014.

Starhopper is quite similar, although it is also serving as a testbed for a far more varied range of technologies due to the fact that it has been developed before the inaugural launch of its namesake (Starship/Super Heavy). By the time SpaceX started Grasshopper/F9R tests, Falcon 9 had already completed several successful launches. With Starhopper, SpaceX is building and testing its first 9m-diameter ‘flight’ hardware, its first propellant tanks built out of steel, its first flight-capable rocket fueled by methane and oxygen, and its first mobile Raptor testbed, among numerous other things. The challenges are inherently much greater, but SpaceX has the luxury of taking the opposite approach it took towards Falcon 9 and building a launch vehicle entirely around its intended reusability, rather than trying to squeeze a method of reusability around an already-flying rocket.

Saurid Oddities

As noted by NASASpaceflight.com in a June 2nd article, SpaceX seems to be juggling its growing selection of newly-produced and tested Raptor engines in pursuit of Starhopper’s return to flight. According to the publication’s reliable sources,

“Up until recently, [SpaceX] was planning to utilize Raptor SN4 for [Starhopper’s first] untethered hops. However, the company has now decided to utilize this engine only for fit checks, and will instead perform the hops with SN5 – the latest Raptor to come out of SpaceX’s factory in Hawthorne, California.” – NASASpaceflight.com, June 2nd, 2019

This indicates that the Raptor engine delivered to Boca Chica on June 1st and currently in the process of being installed on Starhopper is actually more of a stand-in* for a future Raptor, SN05. The reasons behind this Raptor shuffle elude detection, but it’s possible that the simplest explanation – also posed by NASASpaceflight – is the correct one. By shipping a Raptor that may not be ready for flight tests, SpaceX could likely save anywhere from a few days up to a few weeks by doing everything short of lifting off under the powered of Raptor SN04.

*By all appearances, SN04 is a flight-grade Raptor that has completed assembly and likely been test-fired in McGregor, Texas. Why it may currently be resigned to a “stand-in” role is unknown.

Advertisement
-->

Very curiously, upon Raptor SN04’s South Texas arrival, it appears that SpaceX technicians have indeed rapidly installed the engine on Starhopper, but in a position that is decidedly off-center. Pictured above, the photo could have simply caught the engine while technicians were moving it to its actual installation spot, but it could also indicate that SpaceX is speeding towards Starhopper’s first triple-Raptor test flights.

Starhopper delays?

In line with the last-second switch from Raptor SN04 to Raptor SN05 as the engine-to-be for untethered hops, SpaceX has pushed the start of that test series from approximately May 31st to June 11th. More likely than not, the ~11-day delay is meant to allow time for Raptor SN05’s McGregor, Texas acceptance testing, given that – per CEO Elon Musk – the engine wasn’t even finished as of May 22nd.

On the other hand, with Raptor SN05 now scheduled to support Starhopper hop tests as early as mid-June, it begs the question of whether SpaceX is instead working towards expedited triple-Raptor testing. For unknown reasons, neither Raptor SN03 or SN04 are apparently ready to support flight operations, although both have been thoroughly hot-fired in McGregor. Perhaps each engine is a distinct prototype with a different level of experimental readiness, or perhaps SpaceX is just testing certain engines (like SN03) more extensively than others (SN05).

Regardless, SpaceX now seems to have 3-4 intact, functional Raptor engines (excluding SN01; destroyed during stress testing), 2-3 of which are actively testing or being worked on a day’s drive north of Boca Chica. SN02 – having successfully supported a brief duo of ignition tests with Starhopper – could still be intact and test-ready. SN03 is an unknown quantity, but SN04 is clearly in excellent shape and is probably close to flight-readiness if it isn’t already. This is to say that SpaceX likely already has three Raptors on hand that are capable of supporting multi-engine Starhopper testing, whether or not such a test regime would actually be valuable.

Musk has noted that both orbit-capable Starship prototypes will be far closer to finished products and will thus fly with “at least 3 engines” (3 sea level engines, as it would turn out) or even “all 6” (3 sea level, 3 vacuum-optimized). In the meantime, Starhopper stands with an off-centered Raptor, awaiting the arrival of a different Raptor to kick off a second hop test program. If nothing else, SpaceX’s Starship/Super Heavy development program is operating in a spectacularly hardware-rich fashion, lending itself to the breakneck-pace of iteration and improvement SpaceX is famous for.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading