News
SpaceX’s Starhopper readies for more ambitious Raptor-powered flight tests
For the second time in two months, SpaceX technicians have begun to install a Raptor engine on Starhopper, a full-scale Starship testbed theoretically capable of low-velocity, moderate-altitude ‘hops’.
Back in late March, Raptor and Starhopper were joined for the first time, enabling a lengthy series of attempted tests that were followed by two engine ignitions and tethered hops before Raptor was removed for inspection. In the two months since that first round of integrated testing, SpaceX has significantly upgraded Starhopper and its spartan launch facilities, all focused on transforming the odd vehicle from a largely fixed test stand into a giant, mobile Grasshopper.
All the way back in 2012, SpaceX began testing Falcon 9 recovery and reusability concepts with a low-fidelity prototype known as Grasshopper – essentially a minimalist Falcon 9 first stage with ad hoc legs and a single Merlin engine. It supported a series of 8 major test flights – all successful and a source of valuable data – before the vehicle’s 2013 retirement. An upgraded Grasshopper – known instead as Falcon 9 Reusable Development Vehicle (F9R Dev1) – began testing around the same time and continued even higher altitude vertical takeoff/vertical landing (VTVL) tests until its untimely demise in August 2014.
Starhopper is quite similar, although it is also serving as a testbed for a far more varied range of technologies due to the fact that it has been developed before the inaugural launch of its namesake (Starship/Super Heavy). By the time SpaceX started Grasshopper/F9R tests, Falcon 9 had already completed several successful launches. With Starhopper, SpaceX is building and testing its first 9m-diameter ‘flight’ hardware, its first propellant tanks built out of steel, its first flight-capable rocket fueled by methane and oxygen, and its first mobile Raptor testbed, among numerous other things. The challenges are inherently much greater, but SpaceX has the luxury of taking the opposite approach it took towards Falcon 9 and building a launch vehicle entirely around its intended reusability, rather than trying to squeeze a method of reusability around an already-flying rocket.
Saurid Oddities
As noted by NASASpaceflight.com in a June 2nd article, SpaceX seems to be juggling its growing selection of newly-produced and tested Raptor engines in pursuit of Starhopper’s return to flight. According to the publication’s reliable sources,
“Up until recently, [SpaceX] was planning to utilize Raptor SN4 for [Starhopper’s first] untethered hops. However, the company has now decided to utilize this engine only for fit checks, and will instead perform the hops with SN5 – the latest Raptor to come out of SpaceX’s factory in Hawthorne, California.” – NASASpaceflight.com, June 2nd, 2019
This indicates that the Raptor engine delivered to Boca Chica on June 1st and currently in the process of being installed on Starhopper is actually more of a stand-in* for a future Raptor, SN05. The reasons behind this Raptor shuffle elude detection, but it’s possible that the simplest explanation – also posed by NASASpaceflight – is the correct one. By shipping a Raptor that may not be ready for flight tests, SpaceX could likely save anywhere from a few days up to a few weeks by doing everything short of lifting off under the powered of Raptor SN04.
*By all appearances, SN04 is a flight-grade Raptor that has completed assembly and likely been test-fired in McGregor, Texas. Why it may currently be resigned to a “stand-in” role is unknown.
It appears that the Raptor engine is not centered, could it be that they are going straight with the 3 engine test. (Idk honestly, I wonder why this is?) @elonmusk are things about to get epic?? pic.twitter.com/sne5v7SMhy— Austin Barnard? (@austinbarnard45) June 1, 2019
Very curiously, upon Raptor SN04’s South Texas arrival, it appears that SpaceX technicians have indeed rapidly installed the engine on Starhopper, but in a position that is decidedly off-center. Pictured above, the photo could have simply caught the engine while technicians were moving it to its actual installation spot, but it could also indicate that SpaceX is speeding towards Starhopper’s first triple-Raptor test flights.
Starhopper delays?
In line with the last-second switch from Raptor SN04 to Raptor SN05 as the engine-to-be for untethered hops, SpaceX has pushed the start of that test series from approximately May 31st to June 11th. More likely than not, the ~11-day delay is meant to allow time for Raptor SN05’s McGregor, Texas acceptance testing, given that – per CEO Elon Musk – the engine wasn’t even finished as of May 22nd.
On the other hand, with Raptor SN05 now scheduled to support Starhopper hop tests as early as mid-June, it begs the question of whether SpaceX is instead working towards expedited triple-Raptor testing. For unknown reasons, neither Raptor SN03 or SN04 are apparently ready to support flight operations, although both have been thoroughly hot-fired in McGregor. Perhaps each engine is a distinct prototype with a different level of experimental readiness, or perhaps SpaceX is just testing certain engines (like SN03) more extensively than others (SN05).
Regardless, SpaceX now seems to have 3-4 intact, functional Raptor engines (excluding SN01; destroyed during stress testing), 2-3 of which are actively testing or being worked on a day’s drive north of Boca Chica. SN02 – having successfully supported a brief duo of ignition tests with Starhopper – could still be intact and test-ready. SN03 is an unknown quantity, but SN04 is clearly in excellent shape and is probably close to flight-readiness if it isn’t already. This is to say that SpaceX likely already has three Raptors on hand that are capable of supporting multi-engine Starhopper testing, whether or not such a test regime would actually be valuable.
Musk has noted that both orbit-capable Starship prototypes will be far closer to finished products and will thus fly with “at least 3 engines” (3 sea level engines, as it would turn out) or even “all 6” (3 sea level, 3 vacuum-optimized). In the meantime, Starhopper stands with an off-centered Raptor, awaiting the arrival of a different Raptor to kick off a second hop test program. If nothing else, SpaceX’s Starship/Super Heavy development program is operating in a spectacularly hardware-rich fashion, lending itself to the breakneck-pace of iteration and improvement SpaceX is famous for.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.