News
SpaceX’s orbital Starship gains a nose as East Coast prototype makes progress
On May 20th, SpaceX technicians successfully stacked a nosecone on top of the company’s Boca Chica orbital Starship prototype. Simultaneously, a separate team of technicians and engineers have been hard at work building a second similar-but-different Starship prototype near Cape Canaveral, Florida.
Officially confirmed last week by Elon Musk, the SpaceX CEO revealed that the company was not only building two orbital Starship prototypes simultaneously – not news in itself – but that those prototypes were being built as a sort of internal competition between different teams and ideas. The competition is not cutthroat – knowledge is shared between Texas and Florida – but the strategy is fairly similar. In lieu of actual commercial competitors, SpaceX is attempting to compete with itself to more rapidly and effectively develop a brand new launch vehicle – the stainless steel Starship/Super Heavy.
A Starship rises in the East
In just the last week, both SpaceX groups have made major progress. On the East Coast, the general public saw the first photo of SpaceX’s Florida Starship build precisely seven days ago. It appears that SpaceX has more or less taken over a Cocoa, Florida facility known to be the prior home of Coastal Steel, a repeat NASA contractor known for steelwork.
It’s unclear if SpaceX has fully acquired Coastal Steel or is simply partnering with the small company in the early stages of its Florida Starship buildup. Regardless, even from perspectives quite a bit more distant than those available in Texas, it’s clear that the metal workmanship is at least on par with Boca Chica, if not giving them a run for their money.
Admittedly, the playing field is not exactly level. SpaceX’s South Texas team has been working just a few thousand feet away from the unobstructed Gulf of Mexico in conditions that would make for an excellent traditional-aerospace horror show. Aside from a lone tent, all welding, assembly, integration, and testing has been done while fully exposed to the elements. SpaceX’s Florida team appears to have the luxury of an established warehouse – previously used for steelwork – to use as a covered and partially insulated work and staging area. The Florida team effectively had everything they needed (give or take) on hand from the moment work began, while Texas had to quite literally build all of its facilities from nothing.
Be it the facility luxuries or Cape Canaveral’s far larger pool of local aerospace talent, it’s clear that SpaceX’s Florida team will be a competitive force to be reckoned with despite Texas’ apparent head start. In the seven days since the first photos of the Florida Starship were published, SpaceX technicians have almost doubled the height of the largest welded section, raising it from ~5.5m to ~9m (18-30 ft).

Meanwhile, those working inside the staging warehouse continue to crank out 2x9m subsections, already making way for what appears to be the first tapered nose section of the Florida Starship. At this rate, Florida could very well catch up to SpaceX’s Texas Starship just a month or two from now. It’s worth noting that the Florida team does not appear to be involved in any Starhopper activities. SpaceX Boca Chica, on the other hand, has spent a major portion of the last several months building out Starhopper and preparing the odd prototype for untethered hop tests.
The (slightly) Old(er) Guard
Despite Starship Florida’s rapid progress, Starship Texas has not exactly been standing around. In the last week or so, SpaceX technicians and engineers have been simultaneously working on major new integration, assembly, and test campaigns with both Starhopper and the first orbital Starship prototype. A dedicated Starhopper article will come later this week as SpaceX’s South Texas team nears Raptor reinstallation and an untethered hop test campaign, scheduled to begin as early as the end of May.

On the orbital Starship side of things, Boca Chica took a major symbolic step towards aeroshell completion by capping off the upper half of the prototype with a stainless steel nose section. Altogether, the Starship assembly now stands about 25m (80 ft) tall from tip to tail, roughly 60% as tall as a Falcon 9 booster (first stage). With the installation of the craft’s nose, SpaceX has also implicitly confirmed that most – if not all – of the Starship prototype’s tankage still needs to be built, unless a great deal of hardware is hiding inside Boca Chica’s on-site tent.
What could either be the orbital Starship’s seven-Raptor engine section or the start of its liquid oxygen or methane tank is also being built a few hundred feet distant. That mystery segment was recently lifted onto a second concrete jig for easier access, while SpaceX has also been hard at work building a dedicated integration facility similar to the warehouse being used in Florida.

Altogether, SpaceX’s South Texas team appears to be 30-40% away from completing a Starship-sized steel aeroshell. A huge amount of work remains to be done on the inside of the theoretically orbit-capable vehicle, including propellant tanks, a thrust structure capable of supporting seven Raptor engines, landing legs/fins, and a jungle of plumbing and avionics installation. Still, the amount of progress already visible is undeniably impressive, made even more intriguing by the existence of a separate Starship build effort to the east.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.