Connect with us
SpaceX makes the vast majority of Falcon 9 in-house and appears set on continuing that strategy with Starlink. SpaceX makes the vast majority of Falcon 9 in-house and appears set on continuing that strategy with Starlink.

News

SpaceX to in-house mass production of Starlink internet satellite hardware

Published

on

SpaceX is rapidly expanding it’s Starlink internet constellation development to prepare for full-scale production and aims to bring nearly every major piece of satellite and network hardware and software in-house, according to details revealed in dozens of job postings.

While not explicit, this appears to indicate a significant convergence of multiple possible paths to an operational constellation. Put simply, SpaceX now intends to build every single major component of its 4400+ satellite network in-house. It’s almost easier to list the things SpaceX does not mean to build themselves, but here’s a stab at the components to be built in-house: satellite structures, laser (optical) data interlinks, on-orbit phased array antennae, digital signal processor (DSPs) software and hardware to aim those antennae, solar arrays, battery systems, power electronics, custom integrated circuitry and systems on a chip (SoCs), user terminals and larger gateways, network operations, production automation, autonomous satellite constellation management, and much, much more.

While entire articles could be spent describing the complexities of every single one of the above subsystems, the point is that SpaceX appears to have gone all-in on building its own satellite constellation, departing from stances in the past that appeared to leave room for subcontracting and outsourcing the production of major parts of the network, particularly with respect to ground terminals and gateways. Postings for ground station and user terminal engineers describe a goal of medium to high volume in-house production of the critical network and customer-facing hardware, and an entry into the production of high volume consumer technology would be a truly eclectic and unprecedented step for a company theoretically focused on launch vehicle development and production and sustainable Mars colonization.

If anything, they speak to the truly vertical nature of SpaceX. Many technology development production companies would simply accede and accept the best subcontractor/outsourcing bid when entering into new territory truly outside of their internal expertise. SpaceX engineers and managers, however, seem to have concluded that the vast majority of hardware and corporate expertise they could co-opt is just not satisfactory for the purpose of building a paradigm-shifting satellite constellation; or as CEO Elon Musk noted in 2015, to “revolutionize the satellite side of things, just as we’ve done with the rocket side of things.”

This new (and, in retrospect, unsurprising) trailblazing attitude also helps to explain the marginal delay to Musk’s original 2015 schedule, which estimated initial constellation operations (i.e. a few hundred satellites launched) would begin around 2020. Approximately a year later, SpaceX had built rough prototypes in the form of the original Microsat 1A and 1B twins. This initial foray into independent, long-term communications smallsats was shuttered fairly quickly, and neither of the demo satellites were launched. Instead, SpaceX dove back into prototype design and development, culminating roughly two years later with the March 2018 launch of two dramatically improved prototypes, known as Tintin A and B (or Microsats 2A and 2B in FCC licenses).

It seems probable that the source of this delay lay in an internal decision to dramatically reconfigure the internet constellation for far more in-house development, whereas the original Microsats were likely pieced together from a range of components derived from SpaceX’s Cargo Dragon program or more simply from commercial off-the-shelf (COTS) offerings. Instead, SpaceX’s Starlink development offices in Redmond, Washington and throughout California are staffed with as many as 400 to 500 employees dedicated in large part to the nascent program, similar (if not larger) in scale to OneWeb, the only noteworthy satellite internet competitor at present.

If SpaceX’s decision to push back Starlink’s operational debut by a few years in order to bring in-house almost every single critical subcomponent of Starlink pays off, the company could begin launching finalized satellites en masse as early as late 2019/early 2020, with a goal of offering limited service by 2021 per comments made by CEO Elon Musk. Starlink is likely being brought almost entirely in-house because Musk or other high-level executives and engineers see major room for improvement, improvements that could lower the cost of and improve the performance of lightweight communications satellites by an order of magnitude.

The rocket displays its gritty, beautiful suit of soot ahead of its final launch. (Pauline Acalin)

A flight-proven Falcon 9 prepares for launch in May 2018. SpaceX will likely launch at least one more pair of Starlink demo satellites from the West coast later this year (Pauline Acalin)

It will likely take a bit longer than initially expected, but SpaceX may yet still pave their path to Mars colonization with profits derived from a wildly successful and disruptive entrance into the broadband market.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla winter weather test: How long does it take to melt 8 inches of snow?

Published

on

Credit: Teslarati

In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.

I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?

Tesla Model Y Performance set for new market entrance in Q1

Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.

It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.

The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.

Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown

Observations

I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.

I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.

The rest of the test was sitting and waiting.

Advertisement

It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.

However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.

It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.

Check out the video of the test below:

Continue Reading

News

Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult

Published

on

Credit: Grok Imagine

Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.

Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.

However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.

He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:

Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”

This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.

However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.

Continue Reading

News

Tesla gives its biggest hint that Full Self-Driving in Europe is imminent

Published

on

Credit: BLKMDL3 | X

Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.

Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”

Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.

This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.

Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.

This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.

Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.

Advertisement

Tesla Europe builds momentum with expanding FSD demos and regional launches

Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.

Continue Reading