Connect with us

News

DeepSpace: SpaceX takes huge step towards Mars with flawless Crew Dragon performance

Published

on

This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between.

If you’d like to receive DeepSpace and all of our newsletters and membership benefits, you can become a member for as little as $3/month here.


While the mission is not done just yet, SpaceX is days away from (hopefully) wrapping up an extraordinarily smooth debut of its newest spacecraft, a human-rated vehicle known as Crew Dragon. Assuming no anomalous behavior during reentry, descent, and landing this Friday, SpaceX will likely be less than six months away from launching its first astronauts to the International Space Station (ISS), the most important step yet towards offering reliable and routine transport to Earth orbit and ultimately between Earth and Mars. 

Founded by Elon Musk to kickstart a stagnant space industry and drive humanity to become an interplanetary species, SpaceX is in the process of building the first full-scale prototype(s) of the launch vehicle (Super Heavy) and spacecraft (Starship) it believes will deliver on those promises. Along with countless programmatic and technical lessons learned, every conceivable aspect of Crew Dragon’s development will feed directly into SpaceX’s development of Starship, meant to one day safely transport and land as many as 100 passengers on the surface of Mars.

A spacefaring civilization, one step at a time

In the process of building Crew Dragon, SpaceX has been forced to become rising experts in fields like human-rated environmental control and life support systems (ECLSS), as well as ensuring an even more extreme level of redundancy and reliability compared with SpaceX’s already high standards for their uncrewed Falcon rockets and Cargo Dragon spacecraft. 

Advertisement
  • More so than any particular piece of technology present on Crew Dragon, the process of both cooperating and grappling with NASA to build the spacecraft to high standards and ‘certify’ it has hopefully had an extremely positive impact on SpaceX’s own engineers and company-wide standards, albeit potentially at the cost of some of the willingness to take risks and move quickly. 

“I’m personally convinced that this has made, certainly, SpaceX better, to have NASA guide us, and to look at requirements, and to try to question requirements, and what’s the true reason behind those requirements, and then basically comply with the overall safety culture that NASA taught us, I would say, to some extent. And so I feel like it certainly made a better SpaceX and made better engineers out of the SpaceX engineers. And I really appreciate that very much.”

-Hans Koenigsman, Vice President of Mission Assurance, SpaceX

Feet in Earth orbit, head in the Martian clouds

  • Regardless, the end result will ultimately be a reliable spacecraft capable of transporting an average of 4-7 astronauts to and from the ISS, whether that end result is the result of near-perfect execution the first time around or discovering and fixing problems during flight tests. 
    • Compared to NASA, SpaceX prefers a radically agile approach to development, meaning that the company will rapidly build, test, and fly iterations of the same hardware of software, beginning with the minimum viable product and ending (although improvement never really ends) with an advanced solution optimized by extensive lessons learned. 
  • Through the process of building Crew Dragon, SpaceX has hopefully absorbed most of the valuable lessons and practices NASA can often be rich with while rejecting the unhealthy and unsuccessful tendencies that contribute to NASA’s distinctly unimpressive modern efforts to build human-rated rockets (SLS) and spacecraft (Orion, Space Shuttle).
  • With that knowledge and technical experience, SpaceX may already have an extremely strong foundation upon which it can build its next-gen spacecraft, Starship. In theory, Crew Dragon’s life support system – meant to support up to 7 astronauts with extreme reliability and safety – should be able to scale up to ECLSS fit for dozens or hundreds of passengers.
    • In a worst-case scenario relative to mass efficiency, SpaceX could quite literally package Crew Dragon’s ECLSS system into a module and duplicate it as many times as needed for a given Starship crew. Identical modules could then be transported in a cargo bay for any structures built on the surface of Mars or the Moon.
  • Understandably, Crew Dragon does not need a significant number of systems critical for longer stays in space, as it is only designed to support humans for approximately one week in free-flight. SpaceX will still need to develop extremely efficient recycling systems, used to recycle water, oxygen, and other consumables to extend the amount of time the ISS (or Starship/Mars colonies) can operate without external supply deliveries.
    • In essence, recycling technology is roughly (or sometimes exactly) equivalent to something known as in-situ resource utilization (ISRU), basically prioritizing local resources over shipped goods. A small subset of SpaceX’s future projects team has been working on ISRU – particularly Sabatier reactors for Starship refueling on Mars – for several years.
    • In late 2017, Elon Musk stated that the design and development of SpaceX’s own ISRU hardware were “pretty far along.”

Mission Updates:

  • SpaceX’s Crew Dragon spacecraft will attempt its first orbital-velocity reentry and Atlantic Ocean splashdown on the morning of Friday, March 8th.
  • The second launch of Falcon Heavy could occur as early as late March
  • Aside from DM-1 and Falcon Heavy Flight 2, it’s unclear what SpaceX mission will happen next. DM-1 may be the only SpaceX launch in March, while several missions are tentatively scheduled for April and May.

Photos of the week:

B1051 returned to Port Canaveral three days after successfully sending Crew Dragon on its first orbital mission. Thanks to the relatively low-energy trajectory and gentle reentry, SpaceX should be able to refurbish the booster extremely quickly.(c. Tom Cross, Pauline Acalin)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk says xAI has a chance to reach AGI with Grok 5

The comment came after Grok 4 posted strong results on the ARC-AGI benchmark.

Published

on

xAI-supercomputer-memphis-environment-pushback
(Credit: xAI)

Elon Musk suggested this week that his artificial intelligence startup xAI has the potential to reach artificial general intelligence (AGI) with the next version of its large language model, Grok 5. 

The comment came after Grok 4 posted strong results on the ARC-AGI benchmark, which tests reasoning and problem-solving ability.

Musk sees Grok 5 as AGI candidate

In a post on X, user @amXFreeze shared the latest results of the ARC-AGI leaderboard, which showed Grok 4 outpacing rival systems such as OpenAI’s ChatGPT in problem-solving and open program synthesis tasks. 

Musk reacted to the performance by stating that “I now think xAI has a chance of reaching AGI with Grok 5. Never thought that before.” 

Artificial General Intelligence (AGI) refers to an AI system that is capable of matching or surpassing human-level intelligence across tasks such as thinking, reasoning, and other domains by a notable margin, as noted in a report from Benzinga. AI companies today are actively pursuing AGI.

Advertisement

xAI’s speed 

While xAI was only established in March 2023, the startup has grown aggressively. Since its founding, it has rapidly risen in the AI segment and its Grok large language model has become a mainstream option for everyday users, especially on social media platform X. The company is still growing aggressively, and it is currently expanding its Colossus supercomputer cluster in Memphis. 

During xAI’s Engineering Open House event in San Francisco in its early days, Elon Musk highlighted that speed would be the company’s primary competitive edge. To highlight this, Musk stated that “No SR-71 Blackbird was ever shot down and it only had one strategy: to accelerate.” So far, xAI is definitely playing this role very well. 

Continue Reading

News

Tesla lands new partnership with Uber as Semi takes center stage

Tesla and Uber will work together, using the company’s all-electric Semi, to make sustainable Class 8 electric trucks more affordable with three main strategies: Subsidized Pricing, Predictable Growth, and Optimization of Utilization.

Published

on

Credit: Uber

The Tesla Semi has led to a new partnership between the company and Uber, as the two are launching a program that aims to revolutionize logistics by making sustainable commercial vehicles more accessible.

Uber announced on Tuesday that it was planning to launch the Dedicated EV Fleet Accelerator Program in a new partnership with Tesla. Uber’s Freight division is mainly responsible for the new program, which it calls a “first-of-its-kind buyer’s program designed to make electric freight more affordable and accessible by addressing key adoption barriers.”

Tesla and Uber will work together, using the company’s all-electric Semi, to make sustainable Class 8 electric trucks more affordable with three main strategies: Subsidized Pricing, Predictable Growth, and Optimization of Utilization.

  • Subsidized Price: Fleets purchasing Tesla Semis through this program will receive a subsidy on the purchase price.   
  • Predictable Growth: Fleets will integrate their Tesla Semis into Uber Freight’s dedicated solutions for shippers for a pre-determined period. This creates an opportunity for carriers to forecast revenue with confidence, while shippers gain consistent access to reliable, zero-emission capacity. 
  • Optimize Utilization: Uber Freight taps into its extensive freight network to match carriers with consistent, high-quality freight from our strong shipper base—helping ensure the addition of these Tesla Semis stay fully utilized and carriers see dedicated, real, measurable returns from the start

Tesla will work directly with interested companies to iron out technical details about the Semi, as well as its cost of ownership based on the tailored needs of their business. Fleets can expect savings on the first day, Uber says, as they will avoid diesel fuel costs and reduced maintenance, a widely known advantage of EVs.

Uber announced that it had partnered with select carriers to pilot the Dedicated EV Fleet Accelerator Program prior to its launch:

“During the 2-month pilot program, the Tesla Semis showcased both reliability and efficiency for Uber Freight’s shipper network. Over 394 hours of drive time, carriers covered 12,377 miles. With an average net energy consumption of just 1.72 kWh per mile and only 60 hours of total charge time, these results highlight the operational viability of Tesla Semis on demanding freight lanes. “

In its press release launching the program, Uber effectively highlights how the use of the Semi can impact a company’s margins and profitability through fuel savings, reduced maintenance costs, and lower total cost of ownership.

This is something that turns so many people away from gas cars and toward EVs, so it’s no surprise that Uber wanted to emphasize this point on a larger scale with a company that utilizes a fleet of vehicles.

Tesla Semi shows strong results in ArcBest’s real-world freight trial

Tesla has been experimenting with a select group of companies, as well. It partnered with PepsiCo. several years ago, in an effort to launch a pilot program for the Semi. It had excellent results, showing higher efficiency, lower costs, and an exceptional ability to handle long runs.

Drivers have had a lot of positive things to say:

Tesla Semi earns strong reviews from veteran truckers

The Semi will enter mass production next year, but we anticipate that some companies will commit to Uber’s new platform well before then.

Continue Reading

Energy

Tesla recalls Powerwall 2 units in Australia

Published

on

(Credit: nathanwoodgc /Instagram)

Tesla will recall Powerwall 2 units in Australia after a handful of property owners reported fires that caused “minor property damage.” The fires were attributed to cells used by Tesla in the Powerwall 2.

Tesla Powerwall is a battery storage unit that retains energy from solar panels and is used by homeowners and businesses to maintain power in the event of an outage. It also helps alleviate the need to rely on the grid, which can help stabilize power locally.

Powerwall owners can also enroll in the Virtual Power Plant (VPP) program, which allows them to sell energy back to the grid, helping to reduce energy bills. Tesla revealed last year that over 100,000 Powerwalls were participating in the program.

Tesla announces 100k Powerwalls are participating in Virtual Power Plants

The Australia Competition and Consumer Commission said in a filing that it received several reports from owners of fires that led to minor damage. The Australian government agency did not disclose the number of units impacted by the recall.

The issue is related to the cells, which Tesla sources from a third-party company.

Anyone whose Powerwall 2 unit is impacted by the recall will be notified through the Tesla app, the company said.

Continue Reading

Trending