News
DeepSpace: SpaceX takes huge step towards Mars with flawless Crew Dragon performance
This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between.
If you’d like to receive DeepSpace and all of our newsletters and membership benefits, you can become a member for as little as $3/month here.
While the mission is not done just yet, SpaceX is days away from (hopefully) wrapping up an extraordinarily smooth debut of its newest spacecraft, a human-rated vehicle known as Crew Dragon. Assuming no anomalous behavior during reentry, descent, and landing this Friday, SpaceX will likely be less than six months away from launching its first astronauts to the International Space Station (ISS), the most important step yet towards offering reliable and routine transport to Earth orbit and ultimately between Earth and Mars.
Founded by Elon Musk to kickstart a stagnant space industry and drive humanity to become an interplanetary species, SpaceX is in the process of building the first full-scale prototype(s) of the launch vehicle (Super Heavy) and spacecraft (Starship) it believes will deliver on those promises. Along with countless programmatic and technical lessons learned, every conceivable aspect of Crew Dragon’s development will feed directly into SpaceX’s development of Starship, meant to one day safely transport and land as many as 100 passengers on the surface of Mars.
A spacefaring civilization, one step at a time
In the process of building Crew Dragon, SpaceX has been forced to become rising experts in fields like human-rated environmental control and life support systems (ECLSS), as well as ensuring an even more extreme level of redundancy and reliability compared with SpaceX’s already high standards for their uncrewed Falcon rockets and Cargo Dragon spacecraft.
- More so than any particular piece of technology present on Crew Dragon, the process of both cooperating and grappling with NASA to build the spacecraft to high standards and ‘certify’ it has hopefully had an extremely positive impact on SpaceX’s own engineers and company-wide standards, albeit potentially at the cost of some of the willingness to take risks and move quickly.
“I’m personally convinced that this has made, certainly, SpaceX better, to have NASA guide us, and to look at requirements, and to try to question requirements, and what’s the true reason behind those requirements, and then basically comply with the overall safety culture that NASA taught us, I would say, to some extent. And so I feel like it certainly made a better SpaceX and made better engineers out of the SpaceX engineers. And I really appreciate that very much.”
-Hans Koenigsman, Vice President of Mission Assurance, SpaceX
Feet in Earth orbit, head in the Martian clouds
- Regardless, the end result will ultimately be a reliable spacecraft capable of transporting an average of 4-7 astronauts to and from the ISS, whether that end result is the result of near-perfect execution the first time around or discovering and fixing problems during flight tests.
- Compared to NASA, SpaceX prefers a radically agile approach to development, meaning that the company will rapidly build, test, and fly iterations of the same hardware of software, beginning with the minimum viable product and ending (although improvement never really ends) with an advanced solution optimized by extensive lessons learned.
- Through the process of building Crew Dragon, SpaceX has hopefully absorbed most of the valuable lessons and practices NASA can often be rich with while rejecting the unhealthy and unsuccessful tendencies that contribute to NASA’s distinctly unimpressive modern efforts to build human-rated rockets (SLS) and spacecraft (Orion, Space Shuttle).
- With that knowledge and technical experience, SpaceX may already have an extremely strong foundation upon which it can build its next-gen spacecraft, Starship. In theory, Crew Dragon’s life support system – meant to support up to 7 astronauts with extreme reliability and safety – should be able to scale up to ECLSS fit for dozens or hundreds of passengers.
- In a worst-case scenario relative to mass efficiency, SpaceX could quite literally package Crew Dragon’s ECLSS system into a module and duplicate it as many times as needed for a given Starship crew. Identical modules could then be transported in a cargo bay for any structures built on the surface of Mars or the Moon.
- Understandably, Crew Dragon does not need a significant number of systems critical for longer stays in space, as it is only designed to support humans for approximately one week in free-flight. SpaceX will still need to develop extremely efficient recycling systems, used to recycle water, oxygen, and other consumables to extend the amount of time the ISS (or Starship/Mars colonies) can operate without external supply deliveries.
- In essence, recycling technology is roughly (or sometimes exactly) equivalent to something known as in-situ resource utilization (ISRU), basically prioritizing local resources over shipped goods. A small subset of SpaceX’s future projects team has been working on ISRU – particularly Sabatier reactors for Starship refueling on Mars – for several years.
- In late 2017, Elon Musk stated that the design and development of SpaceX’s own ISRU hardware were “pretty far along.”
Mission Updates:
- SpaceX’s Crew Dragon spacecraft will attempt its first orbital-velocity reentry and Atlantic Ocean splashdown on the morning of Friday, March 8th.
- The second launch of Falcon Heavy could occur as early as late March
- Aside from DM-1 and Falcon Heavy Flight 2, it’s unclear what SpaceX mission will happen next. DM-1 may be the only SpaceX launch in March, while several missions are tentatively scheduled for April and May.
Photos of the week:
B1051 returned to Port Canaveral three days after successfully sending Crew Dragon on its first orbital mission. Thanks to the relatively low-energy trajectory and gentle reentry, SpaceX should be able to refurbish the booster extremely quickly.(c. Tom Cross, Pauline Acalin)


News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.
Elon Musk
Elon Musk’s xAI closes upsized $20B Series E funding round
xAI announced the investment round in a post on its official website.
xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development.
xAI announced the investment round in a post on its official website.
A $20 billion Series E round
As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others.
Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.
As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”
xAI’s core mission
Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.
xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5.
“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote.






