SpaceX
How does SpaceX measure up to other Mars-destined challengers? [Countdown to Mars, Part 1]
SpaceX isn’t the only organization with eyes set on the skies of Mars. There are other dreamers with their own plans and technology. How does SpaceX measure up?

If it wasn’t entirely clear before, it is now with all the recent announcements from SpaceX: Elon Musk said “Mars”, and he really meant Mars. While Falcon 9 hits milestone after milestone, SpaceX inches closer and closer to “boots on the ground” in red, Martian regolith.
SpaceX isn’t the only organization with eyes set on Martian skies, however. There are other dreamers with their own plans and technology, NASA being a “given” of course. After all, if we’re going to Mars, it’s natural to expect the agency that sent humans to the moon to have something to say about sending humans to another planetary body.
Who all is planning on going to Mars?
To be clear, the Mars planners I’m referring to here are developing full missions for human transport, not just robotics. Further, I’m narrowing the criteria to only include those actively developing the technology rather than working on related scientific studies, developing artistic concepts, engineering helpful devices, and so forth.
In that light, it seems the field thus far consists of two other major players besides SpaceX.
NASA
Aptly named, NASA’s “Journey to Mars” program consists of developing all the capabilities needed to achieve what its designation implies. Their vision comprises the development of their next generation rocket, the Space Launch System, coupled with a crew capsule called Orion.
The Space Launch System has three primary components: One main core and two solid rocket boosters, most components being either derived or upgraded from space shuttle technology. The plan is to “evolve” the configurations through three “blocks”, the third of which will be capable of handling all of the payload needs for a mission to Mars.
The Orion capsule, nicknamed “Apollo on steroids”, is very similar to the capsules used in the Apollo programs, but with significant upgrades such as the heat shield that must handle higher reentry speeds. Further, it will house up to four astronauts (one more than Apollo) while supported by a service module, i.e., a connected structure that will provide resources such as power and oxygen. Overall, it’s about three feet wider than the Apollo capsules, an expansion which translates into a much roomier space square-footage wise.
Somewhere in NASA’s mix is an Asteroid Redirect Mission that involves capturing an asteroid, bringing it into orbit around the moon, and sending crews there to land and study it. Don’t see how that’s really related to Mars? Neither do I, but it’s included on all the “Journey to Mars” posters so it must be. I think I’ve heard people try and explain why the moon wouldn’t suffice for any Mars-related training as well, but I’m personally not convinced enough to really cite the argument. I’m not alone in that confusion, either.
Personally, I’d prefer the pure scientific study of an asteroid to be the justification for the mission, or maybe even “practice” for a future Armageddon event, but when everyone is drumming for Mars, I guess you do what you can. I’ve read that NASA attempted to market it as both of those, but the attempts weren’t successful.
Oh, wait. They changed “asteroid” to “large boulder on an asteroid”. I wonder why? Some of their pages are still citing the original mission… Perhaps it was always either/or?
Speaking of that poster, there’s a space habitat and Mars transfer craft listed, but no other details are provided. NASA’s political and budgetary constraints seem to be limiting any details about how they plan on getting to Mars (landing in particular) once SLS and Orion are flying. These types of restrictions are the reason NASA even has other contenders for the mission, although those same challengers are the ones pushing the journey into the public drumming in the first place.
Mars One
Mars One is a non-profit foundation which hopes to send astronauts they select and train through an in-house application process to Mars via technology they will pay to have built and launched using current service providers.
Founded by Dutch scientist-entrepreneurs Bas Lansdorp and Arno Wielders in 2011, Mars One is an unusual player in the Mars transport game. It is not an aerospace company, as all systems are designed and built by outsourced companies, and their planned sources of funding are private investment and the creation of a reality show documenting the astronauts’ mission from training through their first steps on Mars (although they’ve had some recent troubles with that). Mars One would also like you to purchase plenty of merchandise in the meantime to support their efforts and have even set up a “point” system to encourage this.
For their astronauts, the company solicited applications from would-be space travelers around the world via the Internet, received about two hundred thousand responses, and is now in the process of narrowing down their candidate field to a maximum of twenty-four hopefuls (six groups of four, specifically) that will train together for the next ten years before groups are shuttled off to Mars every two years.
Mars One also plans on having their entire human habitat set up by rovers prior to the first astronaut arrivals, meaning there will be several cargo missions to the surface in the lead-up years. Their first unmanned mission is planned for 2020 wherein some tech will be put to the test along with placing a communications satellite in orbit. Then, a rover and second communications satellite is planned for 2022, followed by cargo missions in 2024 to have the habitat fully operational by 2025 in advance of the first crew arrival in 2027.
Oh, by the way, their trip to Mars will be one-way. According to them, it’s a strategic choice, not a matter of insurance liability for guaranteeing return.
While all space-going organizations face criticism in one way or another, the criticism lodged at Mars One is fairly significant, some even labeling the mission as a scam. To be fair, the nature of their mission combined with the lack of government backing or a billionaire founder puts them in the position that demands fundraising to be a primary activity. Add to that an estimated mission cost of six billion dollars and skepticism quickly rises. Everything involved becomes subject to close analysis.
Their plans aren’t impossible, of course, just full of challenges without perceivable solutions. I don’t personally believe the mission is a scam, and I don’t doubt its long-term viability should the astronauts actually make it to Mars; I think they won’t be the only crews visiting the planet come the days when their intentions match their funding needs, therefore a “back up” plan is essentially built-in. However, I also see a ten-year mission plan that is placing a lot of faith in contract work that is supposed to produce what SpaceX is still working on fourteen years after-the-fact and with a much better financial portfolio.
Honorable Mention: “Mars Direct” by The Mars Society
Founded in 1998 by Dr. Robert Zubrin (and “others”), The Mars Society has made humans on Mars their business for a very long time. Since they are not an organization primarily developing & building technology to go to Mars, I have to classify them as “honorable mention”; however, their contributions to the effort should definitely be noted. Elon Musk certainly has.

Dr. Zubrin of The Mars Society introduces Elon Musk. (Credit: Chris Radcliff under CC by SA-2.0.)
“Mars Direct” is The Mars Society’s detailed plan for putting humans on Mars and, like Mars One, it focuses on building components using existing technology to achieve orbit and landing rather than depending on future developments. It advocates a “live off the land” approach that minimizes cargo needs.
The Mars Direct mission would comprise two phases. First, using a heavy lift launch vehicle, a fuel generation structure would be sent to the Martian surface to generate a Methane/Oxygen bipropellant for a return trip and to power equipment. Second, another fuel generation structure plus a crew and habitat would be sent and landed near the first structure. While in orbit, the effects of zero gravity would be mitigated by rotation of the crew vehicle via a tether connected to the spent upper stage of the transport rocket to act as an anchor. The crew missions would necessarily require a two-year length due to the orbital proximities of Earth and Mars combined with the six-month travel time each way.
Unlike Mars One, this plan has been developed with incredible detail and was published in 1991 by Dr. Zubrin, David A. Baker, and Owen Gwynne. The Mars Society also has annual conferences (this year’s will be the 19th one) which both flesh out the plan’s details and feature speakers across the aerospace spectrum discussing the various aspects. Dr. Zubrin’s book, The Case for Mars, fleshes out the plan in a more readable format, and there’s also plenty of good stuff on the Mars One website.
SpaceX’s Plan for Mars
The founding goal of SpaceX was, and still is, making humans a multiplanet species. Therefore, no incredibly detailed introduction or lengthy explanation is really needed for them when discussing companies interested in going to Mars (see: publicity). However, for the sake of being thorough (and for the sake of sake’s sake), let’s review the Musk brand for Mars.
Known for its Falcon rocket series (along with its famous founder), SpaceX isn’t hitching a ride to Mars as is Mars One, thereby avoiding the potential pitfall of being “all dressed up with nowhere to go”. They’re building their own ride: The Falcon Heavy.
Scheduled for a test launch this November, the Falcon Heavy will be the most powerful rocket in operation since the Saturn V was used for the Apollo moon program. With three cores powered by nine Merlin engines each, Falcon Heavy will be able to haul around 120,000 pounds to low earth orbit (LEO), 50,000 pounds to geostationary transfer orbit (GTO), and 30,000 pounds of payload to Mars. Just for fun, SpaceX’s website also cites a 6,400 pound payload capacity for trips to Pluto.
SpaceX is also developing their own crew capsule, the Dragon (“Red Dragon” when on its way to Mars), which will include a propulsive landing system (i.e., it can hover) via its eight SuperDraco engines. The landing system also doubles as an emergency escape system in the event that there’s a problem during launch, and while space traveling, Dragon will be supported by a “trunk” (essentially with the same function as Orion’s service module) to support missions as needed.
Now, pardon my excitement, but these things are really cool. The SuperDraco engines are doubled up and self-contained, meaning that the lander can lose up to half its engines and still land safely, and if anything goes wrong with one engine, it’s isolated to not impact the others. The engines are also 3D-printed out of Inconel, a high performance nickel-based super alloy.
Bonus level! SpaceX’s long-terms plans don’t just include short(ish) jaunts to Mars and back, although, unlike Mars One, there will be an option to return to Earth via regular cargo missions. There also may be an option with their up and coming Mars Colonial Transport vehicle.
The Mars Colonial Transporter is, at the moment, a mysterious development SpaceX is working on to achieve its goal of large-scale Martian colonization. There’s plenty of speculation about the details, but officially, even the size is being kept secret for now. Elon will only reveal it to be “So big.” A few details were shared (or speculations confirmed) during a Reddit “Ask Me Anything “ (AMA) session this past January such as:
- The second stage could be reusable
- The architecture will be completely different from the Falcon/Dragon system
- The goal payload capacity is 100 metric tons
- There is a family of methane-based engines called “Raptor” being developed by SpaceX for travel to and exploration of Mars.*
*Note: This detail wasn’t particularly new to the AMA, but there aren’t many original sources where Elon or a SpaceX executive has spoken directly about it, thus I’ve included it.
Overall, it certainly seems like SpaceX is charging ahead compared to the others that are aimed for Mars, but it’s not because of their publicity wins. Their steady march via the piece by piece development of the required technology combined with the customer-driven financial viability of the company as a rocket launch provider are key to the believably that they will actually make Mars “happen”.
Coming Up on Countdown to Mars…
SpaceX’s colonial “grand plan” reveal is what I’m counting down to with this “Countdown to Mars” article series. Scheduled for September 26th – 30th of this year, Elon Musk has stated that he will be announcing detailed plans for their Mars Colonial Transporter at the International Astronautical Conference in Guadalajara, Mexico. It’s supposed to be so awesome, even Elon can hardly contain himself. To say that I’m incredibly excited as well would be a huge understatement. So I won’t. I’ll just keep writing about things related to it!
Coming up on “Countdown to Mars”…
How do these companies plan on solving some of the biggest challenges for achieving a successful mission to Mars? Then, if we are talking about permanent settlements on Mars, what will the human power structure look like? Or in other words, what kind of government will the first human Martians have?
Stay tuned!
News
SpaceX to debut new Dragon capsule in Axiom Space launch
Ax-4’s launch marks the debut of SpaceX’s latest Crew Dragon and pushes Axiom closer to building its own space station.

Axiom Space’s Ax-4 mission targets the International Space Station (ISS) with a new SpaceX Crew Dragon capsule.
The Axiom team will launch a new SpaceX Dragon capsule atop a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida on Wednesday at 8:00 a.m. EDT (1200 GMT). The Ax-4 mission launch was initially set for Tuesday, June 10, but was delayed by one day due to expected high winds.
As Axiom Space’s fourth crewed mission to the ISS, Ax-4 marks the debut of an updated SpaceX Crew Dragon capsule. “This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.
Axiom Space is a Houston-based private space infrastructure company. It has been launching private astronauts to the ISS for research and training since 2022, building expertise for its future station. With NASA planning to decommission the ISS by 2030, Axiom has laid the groundwork for the Axiom Station, the world’s first commercial space station. The company has already begun construction on its ISS replacement.
The Ax-4 mission’s research, spanning biological, life, and material sciences and Earth observation, will support this ambitious goal. Contributions from 31 countries underscore the mission’s global scope. The four-person crew will launch from Launch Complex 39A, embarking on a 14-day mission to conduct approximately 60 scientific studies.
“The AX-4 crew represents the very best of international collaboration, dedication, and human potential. Over the past 10 months, these astronauts have trained with focus and determination, each of them exceeding the required thresholds to ensure mission safety, scientific rigor, and operational excellence,” said Allen Flynt, Axiom Space’s chief of mission services.
The Ax-4 mission highlights Axiom’s commitment to advancing commercial space exploration. By leveraging SpaceX’s Dragon capsule and conducting diverse scientific experiments, Axiom is paving the way for its Axiom Station. This mission not only strengthens international collaborations but also positions Axiom as a leader in the evolving landscape of private space infrastructure.
SpaceX
SpaceX Dragon to carry Axiom’s Ax-4 crew for ISS research
On June 10, Axiom’s Ax-4 mission heads to the ISS on a SpaceX Dragon capsule. It’s a historic return to space for India, Poland & Hungary.

Axiom Space’s Ax-4 mission, launched on a SpaceX Dragon spacecraft, will carry a historic international crew to the International Space Station (ISS) next Tuesday, June 10, from NASA’s Kennedy Space Center in Florida.
SpaceX’s Dragon capsule was recently photographed preparing for the Ax-4 launch. The Dragon will dock at the ISS on June 11 at approximately 12:30 p.m. ET for a 14-day mission focused on groundbreaking microgravity research.
The Ax-4 crew will be led by Commander Peggy Whitson from the United States. It includes Pilot Shubhanshu Shukla from India and mission specialists Sławosz Uznański-Wiśniewski from Poland and the European Space Agency and Tibor Kapu from Hungary. This mission marks a historic return to human spaceflight for India, Poland, and Hungary as each nation sends its first government-sponsored astronauts in over 40 years.
“With a culturally diverse crew, we are not only advancing scientific knowledge but also fostering international collaboration. Our previous missions set the stage, and with Ax-4, we ascend even higher, bringing more nations to low-Earth orbit and expanding humanity’s reach among the stars,” Whitson noted.
The Ax-4 mission’s research portfolio will be Axiom’s most extensive. It includes 60 scientific studies from 31 countries, including the U.S., India, Poland, Hungary, Saudi Arabia, Brazil, Nigeria, the UAE, and Europe. These studies will advance knowledge in human research, Earth observation, life, and biological and material sciences. Key investigations include supporting astronauts with insulin-dependent diabetes, examining microgravity’s impact on the brain, and studying cancer growth, particularly triple-negative breast cancer. Additional research will explore blood stem cells, joint health, blood flow, and astronaut readiness using wearable devices, iPhone software, and AWS Snowcone analytics.
Axiom Space’s partnerships with research organizations and academic institutions aim to deepen understanding of spaceflight’s effects on the human body, with potential applications for Earth-based healthcare. The Ax-4 mission underscores Axiom’s role in redefining access to low-Earth orbit, fostering global collaboration, and advancing microgravity research. As SpaceX’s Dragon enables this historic mission, it reinforces the company’s pivotal role in commercial spaceflight and scientific discovery.
Elon Musk
SpaceX to decommission Dragon spacecraft in response to Pres. Trump war of words with Elon Musk
Elon Musk says SpaceX will decommission Dragon as a result of President Trump’s threat to end his subsidies and government contracts.

SpaceX will decommission its Dragon spacecraft in response to the intense war of words that President Trump and CEO Elon Musk have entered on various social media platforms today.
President Trump and Musk, who was once considered a right-hand man to Trump, have entered a vicious war of words on Thursday. The issues stem from Musk’s disagreement with the “Big Beautiful Bill,” which will increase the U.S. federal deficit, the Tesla and SpaceX frontman says.
How Tesla could benefit from the ‘Big Beautiful Bill’ that axes EV subsidies
The insults and threats have been brutal, as Trump has said he doesn’t know if he’ll respect Musk again, and Musk has even stated that the President would not have won the election in November if it were not for him.
President Trump then said later in the day that:
“The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Government Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
Musk’s response was simple: he will decommission the SpaceX capsule responsible for transporting crew and cargo to the International Space Station (ISS): Dragon.
🚨 Elon says Dragon will be decommissioned immediately due to President Trump’s threats to terminate SpaceX’s government contracts https://t.co/XNB0LflZIy
— TESLARATI (@Teslarati) June 5, 2025
Dragon has completed 51 missions, 46 of which have been to the ISS. It is capable of carrying up to 7 passengers to and from Earth’s orbit. It is the only spacecraft that is capable of returning vast amounts of cargo to Earth. It is also the first private spacecraft to take humans to the ISS.
The most notable mission Dragon completed is one of its most recent, as SpaceX brought NASA astronauts Butch Wilmore and Suni Williams back to Earth after being stranded at the ISS by a Boeing Starliner capsule.
SpaceX’s reluctance to participate in federally funded projects may put the government in a strange position. It will look to bring Boeing back in to take a majority of these projects, but there might be some reluctance based on the Starliner mishap with Wilmore and Williams.
SpaceX bails out Boeing and employees are reportedly ‘humiliated’
-
News2 weeks ago
Tesla to lose 64 Superchargers on New Jersey Turnpike in controversial decision
-
News2 weeks ago
Tesla gets major upgrade that Apple users will absolutely love
-
News2 weeks ago
Tesla teases new color while testing refreshed Model S, X
-
News1 day ago
I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned
-
Elon Musk2 weeks ago
Tesla investors demand 40-hour workweek from Elon Musk
-
Elon Musk1 week ago
Elon Musk explains Tesla’s domestic battery strategy
-
News2 weeks ago
Tesla rolls out new crucial safety feature aimed at saving children
-
Elon Musk2 weeks ago
Tesla lands on date for Robotaxi launch in Austin: report