Connect with us

News

SpaceX’s most important Falcon 9 booster yet returns to port with a lean

Published

on

On November 19th, what is likely SpaceX’s most important Falcon 9 booster yet returned to Port Canaveral with a surprise – perhaps the most dramatic lean ever observed on one of the recovered rockets.

Tilted a solid 10+ degrees from vertical, the lean was immediately visible as soon as the top of the rocket crest the horizon, and it later became clear that one of Falcon 9 booster B1061’s four landing legs had no contact at all with drone ship Just Read The Instruction’s (JRTI) deck. Four days prior, Falcon 9 (and B1061) became the first commercially-developed rocket in history to be certified to launch NASA astronauts, a feat it pulled off flawlessly. Crew Dragon safely delivered four astronauts to the International Space Station on November 16th, marking the culmination of more than half a decade of (mostly) uninterrupted work.

Even before Crew Dragon and Falcon 9’s momentous Crew-1 launch, though, NASA had already revealed some details that would make parts of Crew-1 even more important and the follow-up Crew-2 launch – scheduled as early as March 2021 – perhaps the most significant mission in SpaceX’s history.

Both Crew-1 Falcon 9 B1061 and a separate Falcon 9 rocket (B1049; Starlink-15) were graced with spectacular rainbows on November 20th. (Richard Angle)

In short, less than a month after SpaceX’s equally flawless Crew Dragon Demo-2 astronaut launch debut, NASA contract modifications revealed that the agency had permitted SpaceX to reuse both Dragon capsules and Falcon 9 boosters on upcoming astronaut launches.

“In a wholly unexpected turn of events, a modification to SpaceX’s ~$3.1 billion NASA Commercial Crew Program (CCP) contract was spotted on June 3rd. Without leaving much room for interpretation, the contract tweak states that SpaceX is now “[allowed to reuse] the Falcon 9 launch vehicle and Crew Dragon spacecraft beginning with” its second operational astronaut launch, known as Post Certification Mission-2 (PCM-2) or Crew-2.”

Teslarati.com — June 9th, 2020

Crew Dragon capsule C206 spent a bit less than three months at the ISS before safely returning two NASA astronauts to Earth in early August. (NASA)

A few short months after that discovery, NASA itself specifically announced that it had given SpaceX the go-ahead to reuse Demo-2 Crew Dragon capsule C206 and Crew-1 Falcon 9 booster B1061 on Crew-2, the company’s second operational astronaut launch. Scheduled no earlier than March 31st, 2021, Crew-2 will most likely launch before the Crew-1 Crew Dragon departs the space station and returns its four crew members to Earth, a milestone expected sometime in April.

For almost anyone who has followed NASA’s Commercial Crew Program (CCP) and its attitude towards SpaceX’s reusability efforts from the beginning, the space agency’s rapid willingness to trust its most important cargo – humans – to flight-proven Dragons and Falcon 9 boosters came as a huge surprise. If SpaceX is able to reuse both capsule C206 and booster B1061 as planned, Crew-2 will without a doubt be the most significant milestone in commercial spaceflight history, simultaneously proving that astronauts can be safely launched on commercial flight-proven rockets and spacecraft.

Advertisement
-->
Falcon 9 B1061 recovery operations – and drone ship JRTI’s Octagrabber – are pictured on November 19th and 20th. (Richard Angle)

Of course, while Demo-2 Crew Dragon capsule C206 may have already been successfully recovered, SpaceX still had to land Falcon 9 booster B1061 and safely return it to port after Crew-1 before it could consider reusing it on Crew-2. Based on the rocket’s appearance upon its arrival at Port Canaveral, B1061 had an extremely close call. With what can be intuited from observation alone, it appears that sometime after B1061 landed and before the drone ship’s tank-like ‘Octagrabber’ robot could secure the booster, a stray swell or sudden burst of high seas must have bucked Just Read The Instructions about, causing B1061 to slide around on the slippery deck.

That would explain why the Falcon 9 first stage arrived in port on one of the far corners of drone ship JRTI – also sign that B1061 likely hit the yellow barrier included specifically to prevent boosters from sliding off drone ship decks. At the same time, B1061 must have had a moderately rough landing, causing at least one of its four legs to expend a large portion of a single-use shock absorber called a “crush core,” leaving the booster sitting at an angle. Based on photos of the arrival, that tilt likely left JRTI’s Octagrabber unable to latch onto all four of Falcon 9’s hold-down clamps, forcing recovery technicians to improvise and manually chain the rocket to the deck where the robotic solution fell short.

Despite the lean, B1061 was lifted onto land for leg retraction without issue around 24 hours after arriving in port. (Richard Angle)

Thankfully, the SpaceX recovery team’s apparent heroics and luck proved to be enough and the sturdy Falcon 9 booster was returned to dry land without issue, lifted off of JRTI’s deck around 24 hours after arriving in port. Based on photos of the crush cores at the bottom tip of each leg, B1061’s rough landing and eventful journey was fairly mild as far as they come and, as CEO Elon Musk notes, crush core replacement is likely all that’s needed to make the rocket good as new.

Had B1061 been lost at sea, Crew-2 would have almost certainly been delayed to give SpaceX enough time to come up with an entirely new Falcon 9 first stage. Luckily for SpaceX, that didn’t happen and the company’s plans to launch astronauts on the flight-proven booster are still in play.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading