

News
SpaceX rolls Super Heavy booster to orbital launch mount
For the third time in four months, SpaceX has rolled the first potentially flightworthy Super Heavy booster towards Starbase’s orbital launch mount.
Combined with a large crane – fitted with a jig solely used to lift boosters – moving to a spot just beside the booster, it’s clear that SpaceX is preparing to reinstall Super Heavy Booster 4 (B4) on the orbital launch mount. In the context of its unusual history, though, what happens next to the first more or less finished prototype of the largest rocket booster ever built is less clear.
After a shockingly quick assembly over the course of six summer weeks, Super Heavy Booster 4 rolled out of Starbase’s ‘high bay’ facility and headed to the nearby orbital launch complex, where it was installed on a custom ‘mount’ designed to support booster testing and orbital launches. It’s now clear that during that early August photo opportunity and fit test, Booster 4 was nowhere close to finished. Nor, apparently, was it anywhere close to complete one month later when it returned to the orbital pad for the second time after another few weeks of work back at the high bay.
Three months (almost 14 weeks or 100 days) after the Super Heavy prototype’s second trip to the pad, SpaceX has yet to attempt to put the booster through a single proof test. There also appears to be a significant amount of work left to finish installing external ‘aerocovers’ and a heat shield meant to enclose all 29 of its Raptor engines. In the three-year history of Starbase, there isn’t a single prototype of the roughly two-dozen SpaceX has built, tested, and even flown that’s spent even half as long as Super Heavy B4 between apparent structural completion and its first test. Perhaps the fact that Booster 4 is a first-of-its-kind pathfinder explains SpaceX’s uncharacteristic sluggishness or reluctance to actually test the rocket.
In every other instance, SpaceX’s approach to Starship development has been to move incredibly quickly, build a large number of prototypes, and rapidly test those prototypes – often resulting in catastrophic failures. Data is gathered from those failures (SN1, SN3, SN4, SN8, SN9, SN10, SN11, and half a dozen smaller test tanks serve as examples), changes are made, and then the new and improved prototypes that follow repeat the process until SpaceX arrives at a successful design.
Super Heavy B4’s circuitous path has been almost nothing like those of its predecessors. That could also be partly explained by the unavailability of a stand or facilities capable of truly proof testing a Super Heavy, which necessitates a supply of around 3200 tons (7M lb) of liquid nitrogen (LN2; for a cryogenic proof test with full tanks), another 3200 tons of a combination of liquid methane (LCH4) and oxygen (LOx), and the ability to ignite – and survive – as many as 29 to 33 Raptor engines. The suborbital stands SpaceX has used to proof Starships and even Super Heavy Booster 3 don’t even have half the storage capacity required to fully test a booster and the mounts and their surroundings would likely be catastrophically damaged or destroyed by the thrust and blast created by dozens of Raptors.
Still, SpaceX could have theoretically put Booster 4 through a partial cryoproof and maybe fired up as many as nine Raptors at once – not a replacement for full proof testing but still plenty to ensure Super Heavy’s structural integrity and gather invaluable data on clustered Raptor performance. Instead, of course, Super Heavy B4 has sat at Starbase’s former landing zone for more than three months while teams removed engines, reinstalled engines, half-installed a full Raptor heat shield; and installed two of six or seven ‘aerocovers’ needed to protect heat exchangers, racks of pressure vessels, and hydraulic systems installed on the booster’s aft.
This is all to say that from the outside looking in, Booster 4’s path towards testing and flight has been almost entirely different from that of any other Starship prototype. While still quick in comparison with other launch vehicle development programs, relative to other Starship and Super Heavy prototypes, the rate of B4 progress has been far slower – strongly implying that something is seriously wrong with the booster, that SpaceX no longer feels that partial testing is worth the effort, that finishing Booster 4 just hasn’t been a priority for several months, or some combination of the above.
What that ultimately means is that it’s almost impossible to predict what Super Heavy B4’s future holds beyond the clear evidence that SpaceX will soon reinstall to reinstall it on an orbital launch mount that’s much closer to completion than it was the last time B4 was installed. At this point, it’s just as likely that the booster’s third launch mount installation will just be another mechanical fit test, though the hope is that it will kick off full-scale pneumatic and cryogenic proof testing. It could even culminate in the static fire of some or all of its 29 Raptor engines, which have been installed for several months.
News
Tesla explains why Robotaxis now have safety monitors in the driver’s seat
The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media.

Tesla has provided an explanation about the presence of safety monitors in the driver’s seat of its autonomous Robotaxi units.
The autonomous ride-hailing service is currently being deployed in Austin and the Bay Area, with more cities across the United States expected to gain access to the service later this year.
Safety Monitors
When Tesla launched its initial Robotaxi program in Austin, the company made headlines for operating vehicles without a human in the driver’s seat. Even with this setup, however, Tesla still had safety monitors in the passenger seat of the Robotaxis. The safety monitors, which do not interact with passengers, have been observed to report issues and other behaviors from the autonomous vehicles in real time.
Safety monitors on the driver’s seat were also employed in the service’s Bay Area rollout, though numerous members of the EV community speculated that this was likely done to meet regulations in California. However, with the expansion of the Austin geofence, riders in Tesla’s Robotaxis observed that the safety monitors in the city have been moved to the driver’s seat as well.
Tesla’s explanation
The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media. Longtime FSD tester Whole Mars Catalog, for one, speculated that the move might be due to Texas’ new regulations for autonomous vehicles, which took effect recently. Interestingly enough, the official Tesla Robotaxi account on X responded to the FSD tester, providing an explanation behind the safety monitor’s move to the driver’s seat.
“Safety monitors are only in the driver’s seat for trips that involve highway driving, as a self-imposed cautious first step toward expanding to highways,” the Tesla Robotaxi account noted.
Tesla has been extremely cautious with its autonomous driving program, particularly with the rollout of its Robotaxi service, which use Unsupervised FSD. This is quite understandable considering the negative media slant that Tesla is consistently subjected to, which could very well result in minute incidents or mistakes by Robotaxis being blown out of proportion.
Elon Musk
The Boring Company begins hiring for Nashville’s Music City Loop
Tennessee Gov. Bill Lee expressed strong support for the project.

Elon Musk’s The Boring Company has started recruitment efforts for the Music City Loop, an underground tunnel system designed to link downtown Nashville with Nashville International Airport.
Tennessee Gov. Bill Lee expressed strong support for the project, describing it as a cost-free alternative to traditional mass transit systems that could ease traffic congestion in the city. Initial digging began in mid-August, with visible progress reported by September 1, as noted in a WKRN report.
Job creation and project scope
The Boring Company is currently seeking engineers, electricians, mechanics, and operations coordinators as part of its hiring drive for the Music City Loop in Nashville. Gov. Lee emphasized that unlike large-scale transit projects that typically cost billions, the tunnel system will not burden taxpayers.
“We’ve been trying to find ways, Metro Nashville has in particular, to develop transit in the city for a long time. It costs billions and billions of dollars to build out transit systems. We now have an opportunity to have a transit system that costs the taxpayers nothing,” Lee said, calling the effort the fast lane to the city’s future.
The Music City Loop aims to provide a quick and efficient link between the city center and the airport, similar to The Boring Company’s other tunnel projects like the Las Vegas Convention Center Loop. Officials have praised the company for cooperating with state permitting and regulatory requirements, suggesting that the Nashville Loop project is advancing in line with established processes.
Community reactions and concerns
While officials are optimistic, community response has been mixed. Some residents have raised concerns about the speed of approval and a lack of public discussion before construction began.
Nashville resident Taylor John cited environmental impacts and worries that the tunnel could primarily serve tourists rather than local commuters. “I have a lot of concerns, first of all, by how fast this decision was made, I don’t think there was a lot of discussion from the members of the community before this decision was made. It’s going to impact us,” the resident stated.
Others, however, see the project as an innovative leap forward. “There’s a whole untapped potential underneath our feet,” resident Nathaniel Lehrer stated. “Anything that can save time when picking up family or friends or you need to catch a flight, it’d be an awesome option to have.”
News
Miami Beach Mayor considering Elon Musk’s Boring Company tunnels
Miami Beach faces unique constraints, including chronic flooding, porous limestone foundations, and its low elevation near sea level.

Miami Beach Mayor Steven Meiner has asked city commissioners to consider whether underground transit tunnels could be a feasible solution to the city’s worsening traffic.
The proposal reflects growing interest in exploring unconventional transit options, especially after city leaders rejected plans to extend the downtown Miami Metromover to South Beach.
New transit alternatives
In a memo, Meiner noted that his request is not tied to a single project but is intended to open a broader discussion on engineering challenges, environmental impacts, potential funding, and integration with existing transit systems. Miami Beach faces unique constraints, including chronic flooding, porous limestone foundations, and its low elevation near sea level, according to Axios.
The tunnel idea is not entirely new. In 2022, Meiner suggested reaching out to Elon Musk’s The Boring Company to discuss potential projects, citing the firm’s work on the Vegas Loop in Las Vegas. At the time, the city passed a resolution to study tunnels further, though it remains unclear whether any formal discussions with the tunneling startup actually took place.
Previous proposals
The Boring Company has shown interest in South Florida before. In 2021 and 2022, it submitted plans for Tesla-powered tunnel systems in Fort Lauderdale and North Miami Beach. While the Fort Lauderdale project was later suspended, reports suggest the North Miami Beach proposal remained active into 2023. Musk also met with Miami Mayor Francis Suarez in 2021 to discuss tunnel systems, though no progress has been reported since.
The Boring Company has garnered some experience with consumer tunnels over the years, thanks in no small part to the Las Vegas Convention Center and Vegas Loops, which use Tesla vehicles. The greater Vegas Loop is still being expanded today, and efforts are underway to transition the Teslas being used in the tunnels to use Unsupervised FSD.
-
News5 days ago
Tesla is overhauling its Full Self-Driving subscription for easier access
-
Elon Musk6 days ago
Elon Musk shares unbelievable Starship Flight 10 landing feat
-
Elon Musk7 days ago
Elon Musk reveals when SpaceX will perform first-ever Starship catch
-
Elon Musk1 week ago
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
-
News3 days ago
Tesla appears to be mulling a Cyber SUV design
-
News6 days ago
Tesla expands crazy new lease deal for insane savings on used inventory
-
Elon Musk22 hours ago
Tesla’s next-gen Optimus prototype with Grok revealed
-
News6 days ago
Tesla talks Semi ramp, Optimus, Robotaxi rollout, FSD with Wall Street firm