Connect with us

News

SpaceX rolls Super Heavy booster to orbital launch mount

Published

on

For the third time in four months, SpaceX has rolled the first potentially flightworthy Super Heavy booster towards Starbase’s orbital launch mount.

Combined with a large crane – fitted with a jig solely used to lift boosters – moving to a spot just beside the booster, it’s clear that SpaceX is preparing to reinstall Super Heavy Booster 4 (B4) on the orbital launch mount. In the context of its unusual history, though, what happens next to the first more or less finished prototype of the largest rocket booster ever built is less clear.

After a shockingly quick assembly over the course of six summer weeks, Super Heavy Booster 4 rolled out of Starbase’s ‘high bay’ facility and headed to the nearby orbital launch complex, where it was installed on a custom ‘mount’ designed to support booster testing and orbital launches. It’s now clear that during that early August photo opportunity and fit test, Booster 4 was nowhere close to finished. Nor, apparently, was it anywhere close to complete one month later when it returned to the orbital pad for the second time after another few weeks of work back at the high bay.

August 6th. (SpaceX)
September 7th. (Starship Gazer)

Three months (almost 14 weeks or 100 days) after the Super Heavy prototype’s second trip to the pad, SpaceX has yet to attempt to put the booster through a single proof test. There also appears to be a significant amount of work left to finish installing external ‘aerocovers’ and a heat shield meant to enclose all 29 of its Raptor engines. In the three-year history of Starbase, there isn’t a single prototype of the roughly two-dozen SpaceX has built, tested, and even flown that’s spent even half as long as Super Heavy B4 between apparent structural completion and its first test. Perhaps the fact that Booster 4 is a first-of-its-kind pathfinder explains SpaceX’s uncharacteristic sluggishness or reluctance to actually test the rocket.

In every other instance, SpaceX’s approach to Starship development has been to move incredibly quickly, build a large number of prototypes, and rapidly test those prototypes – often resulting in catastrophic failures. Data is gathered from those failures (SN1, SN3, SN4, SN8, SN9, SN10, SN11, and half a dozen smaller test tanks serve as examples), changes are made, and then the new and improved prototypes that follow repeat the process until SpaceX arrives at a successful design.

Super Heavy B4’s circuitous path has been almost nothing like those of its predecessors. That could also be partly explained by the unavailability of a stand or facilities capable of truly proof testing a Super Heavy, which necessitates a supply of around 3200 tons (7M lb) of liquid nitrogen (LN2; for a cryogenic proof test with full tanks), another 3200 tons of a combination of liquid methane (LCH4) and oxygen (LOx), and the ability to ignite – and survive – as many as 29 to 33 Raptor engines. The suborbital stands SpaceX has used to proof Starships and even Super Heavy Booster 3 don’t even have half the storage capacity required to fully test a booster and the mounts and their surroundings would likely be catastrophically damaged or destroyed by the thrust and blast created by dozens of Raptors.

Advertisement
-->

Still, SpaceX could have theoretically put Booster 4 through a partial cryoproof and maybe fired up as many as nine Raptors at once – not a replacement for full proof testing but still plenty to ensure Super Heavy’s structural integrity and gather invaluable data on clustered Raptor performance. Instead, of course, Super Heavy B4 has sat at Starbase’s former landing zone for more than three months while teams removed engines, reinstalled engines, half-installed a full Raptor heat shield; and installed two of six or seven ‘aerocovers’ needed to protect heat exchangers, racks of pressure vessels, and hydraulic systems installed on the booster’s aft.

Booster 4’s half-finished aft as of December 11th. (NASASpaceflight – bocachicagal)
B4 rolls towards the launch mount on December 12th. (NASASpaceflight – bocachicagal)

This is all to say that from the outside looking in, Booster 4’s path towards testing and flight has been almost entirely different from that of any other Starship prototype. While still quick in comparison with other launch vehicle development programs, relative to other Starship and Super Heavy prototypes, the rate of B4 progress has been far slower – strongly implying that something is seriously wrong with the booster, that SpaceX no longer feels that partial testing is worth the effort, that finishing Booster 4 just hasn’t been a priority for several months, or some combination of the above.

What that ultimately means is that it’s almost impossible to predict what Super Heavy B4’s future holds beyond the clear evidence that SpaceX will soon reinstall to reinstall it on an orbital launch mount that’s much closer to completion than it was the last time B4 was installed. At this point, it’s just as likely that the booster’s third launch mount installation will just be another mechanical fit test, though the hope is that it will kick off full-scale pneumatic and cryogenic proof testing. It could even culminate in the static fire of some or all of its 29 Raptor engines, which have been installed for several months.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading