Connect with us

News

SpaceX’s Crew Dragon is pushing the envelope of parachute engineering, says NASA

A recent Crew Dragon parachute test reportedly proved that SpaceX has solved a problem that caused at least one previous test failure. (SpaceX)

Published

on

On September 17th, a NASA blog post praised the progress SpaceX has made with Crew Dragon’s parachute system, indicating that the company is actually pushing the state of the art forward with improved modeling after dozens of tests.

Both before and after SpaceX completed Crew Dragon’s flawless March 2019 orbital launch debut, both NASA and the agency’s Aerospace Safety Advisory Panel (ASAP) have relentlessly focused on two main concerns: Falcon 9’s COPVs and Crew Dragon’s parachutes. The reasoning behind that focus is logical but may pose some problems.

Assuming that discussion points raised during quarterly ASAP and NASA Advisory Council (NAC) meetings are an accurate external representation of NASA’s internal Commercial Crew Program (CCP) priorities, the space agency has been focused on parachutes and COPVs for years. This is primarily a result of NASA’s notoriously reactive approach to safety: SpaceX suffered two COPV-related Falcon 9 failures in 2015 and 2016 and has experienced an unknown number (likely 1-3) of anomalies during Crew Dragon parachute testing.

As a result, NASA has focused extensively on these two stand-out concerns. To an extent, this is reasonable – if you know things have a tendency to fail, you’re going to want to make sure that they don’t. However, prioritizing reactive safety measures at the cost of proactive safety would be a major risk, akin to getting in a car crash because you didn’t use a turn signal and then prioritizing turn signal use so much that you forget to look both ways before making turns. Sure, you will probably never get in the same crash, but you are raising the risk of new kinds of accidents if you overcorrect your attention distribution.

NASA infamously suffered from this throughout the Space Shuttle program, analyzing known-quantities into oblivion as systematic organizational failures and glaring (but new) design flaws were either ignored or buried until it was far too late. It’s impossible to say if NASA is repeating this apparently deep-seated organizational error with Commercial Crew – only the technical experts at SpaceX and NASA have the data to accurately judge. It can be said with certainty, however, that the space agency (and its advisory panels) completely failed to predict the failure mode(s) that caused an April 20th Crew Dragon explosion that would have almost certainly killed all aboard, all while COPVs and parachutes continue(d) to be the apparent focus.

Pushing the envelope of parachute design

Qualms aside, NASA’s September 17th blog does serve as a unique look into the benefits that the space agency’s prioritization of the obvious – for better or for worse – is producing. According to NASA, the incredibly extensive testing SpaceX has had to do to satisfy agency requirements has lead the company to develop “a better understanding of how to safely design and operate parachute clusters”. SpaceX has reportedly completed 48 distinct parachute tests, of which one or two apparently failed.

Crew Dragon successfully returned from its first orbital mission and performed a perfect parachute deployment and splashdown sequence on March 8th, 2019. (NASA)

In response to the additional testing and analysis NASA required after a recent April 2019 test failure, SpaceX has essentially been forced to push the state of the art of parachute design and modeling to new levels. NASA says that SpaceX has begun to model certain conditions and newfound failure modes in ways that “provide a better understanding of parachute reliability” and have forced NASA to reevaluate its own standards and certification processes. Shown in the video above, SpaceX recently completed a successful second attempt of its failed April 2019 parachute test, a major step towards confirming that the new parachute analysis and design have mitigated prior faults.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla preps for a Cybercab takeover of the Robotaxi platform after pilot program

Tesla looks to be preparing the Cybercab for Robotaxi operation as castings pile up at Gigafactory Texas.

Published

on

(Credit: Teslarati)

Tesla is evidently preparing for the Cybercab to take over the Robotaxi platform after the pilot program in Austin, Texas, is launched.

That claim is made based on new drone footage from Gigafactory Texas captured by Joe Tegtmeyer, who found hundreds of Cybercab castings that have accumulated on property in Austin.

The Cybercab is Tesla’s dedicated Robotaxi vehicle that was unveiled last October. It features just two seats and is minimalistic, aimed toward allowing the Full Self-Driving suite to chauffeur passengers from Point A to Point B without ever having to deal with human interaction or any responsibilities within the vehicle.

In June, Tesla plans to launch its first Robotaxi rides in Texas. Although employees in Austin and in the Bay Area of San Francisco have already had access to over 1,500 trips and 15,000 miles of autonomous (but supervised) travel, Tesla plans to launch a driverless version in a limited fashion in June.

However, this initial pilot program, while presumably operating on an Unsupervised version of the FSD, will only utilize Model Ys, at least at first.

The drone footage captured by Tegtmeyer today seems to tell a story of a quick transition to the Cybercab for the Robotaxi responsibilities, especially as Tesla gets its feet wet with the early Unsupervised FSD rides and gains confidence in the fleet’s ability to navigate passengers:

It appears that between 400 and 500 Cybercab castings can be seen in the images Joe captured, a very respectable number considering the company said it will not launch the Robotaxi with the initial rides it gives in Austin.

The images seem to paint a picture that Tesla is truly ready to get things moving in terms of the Cybercab project. While it does not plan to use the vehicle initially, its manufacturing efforts for the car are being prepared by stacking these castings so they’re ready to be expanded upon into the real thing.

On the most recent Earnings Call, Tesla’s VP of Vehicle Engineering, Lars Moravy, said the Cybercab’s engineering has progressed over the last several months to “derisk things like corrosion, the ceiling across the seams of the vehicle, and when you marry several components,” and even things like early crash testing have already taken place.

Moravy continued, “As with all that combined, we kind of go into the builds that we have in this quarter for the Cybercab product, and that’s the next real big test of full-scale integration with the unboxed process. And that’s kind of where we are. So you’ll see them on the test roads in a couple of months.”

Continue Reading

Lifestyle

Tesla Semi futuristic sci-fi acceleration sound will never get old

Videos that capture the Semi moving at speed are most notable due to their sheer cool factor.

Published

on

Credit: Tesla Owners Silicon Valley/X

The Tesla Semi is not yet in mass production, but the company has accumulated over 7.9 million miles across its test fleet. With Tesla using the Semi for its operations, it is no surprise that sightings of the Class 8 all-electric truck have been abounding. 

These sightings from Tesla enthusiasts vary, but those that capture the the Class 8 all-electric truck moving at speed are most notable, possibly due to their sheer cool factor.

Tesla Semi’s Roar

There is something that just stands out with the Semi, particularly on the road. While the Semi does not have the Cybertruck’s brutalist, angular design, it is still very striking because it’s such a massive machine that moves far too quietly for its size. This is, of course, one of the reasons why the vehicle also becomes extra noteworthy when it fires up its electric motors and accelerates.

Take this video from Tesla Owners Silicon Valley, for example, which shows the all-electric hauler accelerating while pulling what appears to be a full load. In these situations, the Tesla Semi actually becomes audible, but unlike traditional diesel-powered truck, the Class 8 all-electric truck “roars” with its own, unique futuristic, sci-fi sound. In such situations, one could feel the Semi’s raw power, which comes from its three independent motors on its rear axles.

Tesla Semi Ramp

Tesla has been promoting the Semi quite a bit as of late, and recent reports have suggested that the company is putting in a lot of effort to prepare the vehicle for its production in Nevada. Tesla’s Careers website has gone live with over 80 Semi-related job openings recently as well, and a recent report has suggested that Tesla has ramped the Semi’s factory workers in Nevada to over 1,000 employees.

Advertisement

The company has even shared an update video of the Semi factory’s progress near Giga Nevada, as well as the design of the vehicle’s new logo. The Semi’s updated logo is quite interesting as it features elements from the Tesla Model 3’s first logo, which was unveiled way back in 2016.

Continue Reading

News

Robots like Tesla Optimus are a $5 trillion opportunity: analyst

This massive opportunity could be tapped by Tesla, thanks to its Optimus humanoid robot.

Published

on

tesla-optimus-pilot-production-line-fremont-factory
Credit: Tesla

Morgan Stanley analysts have estimated that the humanoid robot market could offer a $5 trillion opportunity by the middle of the century. This massive opportunity could be tapped by Tesla, thanks to its Optimus humanoid robot.

The analysts, however, noted that the humanoid robots will likely be mostly used in industrial and commercial deployments.

The Estimates

Estimates from Morgan Stanley analysts point to humanoid robots hitting $5 trillion in global revenue by 2050. This, the analysts noted, would be about double the total revenue of the 20 largest automakers in 2024. In 2050, Morgan Stanley analysts estimated that there might be about 1 billion humanoid robots deployed.

As noted in a report from Investing.com, the shift to humanoid robots would be gradual. By 2035, the analysts estimated that just about 13 million humanoid robots will be in use, most of which will be used in industrial and commercial settings. Even in 2050, when the analysts estimated that 1 billion humanoid robots will be in use, an estimated 90% might still be used in industrial and commercial settings.

The advent of humanoid robots will likely be felt in the labor sector, Morgan Stanley analysts noted. By 2030, the analysts noted that humanoid robots could replace about 40,000 jobs. Just ten years later, in 2040, the number of jobs that robots could take over could balloon to 8.4 million. By 2050, the analysts noted that 62.7 million humans may end up watching humanoid robots do their jobs.

Advertisement

Tesla Potential

Morgan Stanley noted that companies like Tesla, which control the “brains, bodies, branding and ecosystems” of the humanoid robots, would be able to offer the highest value. This is good news for Tesla’s Optimus program, as it is a product that is designed to be produced at an extreme scale. During the Q1 2025 All Hands meeting, Elon Musk reiterated the idea that Optimus could very well become the biggest product of all time.

Most importantly, Musk also stated that Tesla is internally aiming to acquire enough resources to produce 10,000 to 12,000 Optimus robots this year. But even if Tesla just manages half of this number, or about 5,000 Optimus robots this year, it would already be impressive.

“Even 5,000 robots, that’s the size of a Roman legion, FYI, which is like a little scary thought. Like a whole legion of robots, I’ll be like ‘whoa.’ But I think we will literally build a legion, at least one legion of robots this year, and then probably 10 legions next year. I think it’s kind of a cool unit, you know? Units of legion. So probably 50,000-ish next year,” Musk stated.

Continue Reading

Trending