News
SpaceX waits in the wings as NASA risks maiming Jupiter probe to pinch pennies
SpaceX and its Falcon Heavy rocket continue to wait in the wings as NASA risks maiming its ‘Europa Clipper’ Jupiter probe by pinching the wrong pennies.
For the second time, NASA has performed “continuation/termination reviews” of three of the Europa Clipper spacecraft’s scientific instruments after budget overruns on the order of no more than a few tens of millions of dollars. Thankfully, no instruments were canceled, unlike the “ICEMAG” magnetometer that was functionally killed last year. Still, a NASA program scientist casually noted that the space agency would tolerate launching without one of two cameras and would offer no more funding to a mass spectrometer instrument (MASPEX), raising the risk of instrument failure during the challenging mission.
For any scientific spacecraft or rover, the instruments carried along are effectively the entire reason for their existence: if those instruments are faulty (or even removed before launch), the mission is effectively rendered pointless. Further, due to the sheer complexity and challenges posed by the act of getting to the destination and surviving after arrival, the actual instruments most scientific spacecraft carry represent a tiny fraction of the overall mission cost and mass. It’s not easy to readily imagine a better way to signal inept program management than by singularly focusing on that tiny, lifeblood-esque portion of a spacecraft’s budget. Undeterred, that is exactly what NASA appears to be doing with Europa Clipper – penny-wise, perhaps, but undoubtedly pound-foolish.

It’s not always true that only a small portion of an exploratory spacecraft’s budget is spent on scientific instruments but it absolutely is when it comes to Europa Clipper. Originally hoped to cost as little as $2 billion in 2013, Europa Clipper’s budget allocation has ballooned to $4.5 billion over the life of the program. Of that $4.5 billion, as little as $110M was dedicated to nine scientific instruments assigned to the spacecraft – a ratio of ~41:1. Even if instrument cost ballooned by 100% to ~$220 million, it would still be a measly 20:1. The space environment around Jupiter is admittedly one of the most challenging in the Solar System, warranting some imbalance, but either ratio is still exceptionally bad as far as most exploratory missions go.
Designed to create detailed maps of Europa’s theorized water oceans, ICEMAG, for example, jumped from a $30 million cost estimate to $45 million before NASA abruptly killed it. A Clipper planetary scientist called ICEMAG “a critical instrument that’s been central to Europa science forever”. MASPEX, meanwhile, is a mass spectrometer that will be used to analyze possible chemicals captured by flying through Europa’s transient atmosphere (or, even better yet, plumes from vast ocean geysers). In other words, the instrument most likely to be hobbled next by NASA is also the only instrument on Europa Clipper capable of potentially detecting signs of life by directly sampling material ejected by Europa’s plumes.
Even just with ICEMAG removed, the value proposition of a $4.5 billion mission to an ocean moon of Jupiter becomes much hazier. With ICEMAG removed and MASPEX at risk of being thrown to the wolves, Europa Clipper’s purpose becomes even weaker. Of course, seven valuable instruments remain – some of which partially overlap with MASPEX’ goals – and MASPEX could still technically make it to the finish line in its original handicap-free state, but the tides are definitely not moving in an encouraging direction.


The worst part is that excluding the extraordinarily expensive spacecraft that will host instruments worth ~3-5% its cost, Congress has been dead-set on forcing Europa Clipper to launch on NASA’s chronically-delayed, over-budget Space Launch System (SLS) rocket. SLS has yet to launch once despite more than a decade of development and almost $30 billion spent on the rocket alone, and it would take a miracle for an SLS rocket to be ready to launch Clipper before 2025 or 2026. Europa Clipper is working towards a launch no earlier than 2024, meaning that the spacecraft would have to be stored indefinitely at a cost of at least $125 million per year.
Intrepid readers may note that the cost of simply waiting a single year for SLS to be ready for launch is higher than the cost of all of Europa Clipper’s scientific instruments at their original $110 million budget. The actual cost to NASA for a single SLS launch is expected to $1.5 billion at the absolute minimum, while $2-2.5 billion is far more reasonable. With a little effort and some moderate cruise stage tweaks, Ars Technica has already reported that an expendable SpaceX Falcon Heavy rocket augmented with an off-the-shelf kick stage could send Europa Clipper to Jupiter in 5-6 years, compared to ~3 with SLS.


Ironically, that means that if Falcon Heavy was ready to launch Europa Clipper when the spacecraft is expected to be ready in 2024, it would actually arrive at the same time (or close) if it launched on SLS – once a minimum two-year launch vehicle delay is accounted for. A Falcon Heavy would also save NASA at least $1-2 billion, while it would directly save the Europa Clipper program the ~$250 million it would otherwise need to spend to store the spacecraft while waiting years for an SLS rocket. That $250 million alone – an inevitable add-on cost if SLS is chosen – could easily double the budget of every single Europa Clipper science instrument, adding plenty of breathing room, reinstating ICEMAG, and likely improving the science they output – data-gathering quite literally being the whole purpose of the mission.
Of course, the odds that NASA actually steps out from under the political shadow of SLS and stops playing penny wise and pound foolish with the extraordinarily expensive science missions it shepherds is unlikely. But still, the possibility (and hope) remains. Most recently, a very slight change in the wording of a proposed law (bill) could give the Europa Clipper program the legal wiggle room it needs to sidestep Congress’ desire to force it to launch on SLS. Of course, the senators and representatives with parochial attachment to the rocket will continue to fight tooth and nail to legally force it upon NASA at every possible turn, but there is now at least a chance of a sane outcome.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.