Connect with us
USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier) USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)

SpaceX

SpaceX’s third Falcon Heavy launch is just one month away

Falcon Heavy side boosters B1052 and B1053 land at Landing Zones 1 and 2 (LZ-1/LZ-2) after their launch debut and Falcon Heavy's first commercial mission. Both will fly again as part of the STP-2 mission. (USAF - James Rainier)

Published

on

SpaceX is exactly one month away from Falcon Heavy’s next scheduled launch, an important mission for the US Air Force known as Space Test Program 2 (STP-2). Carrying 24 satellites of various sizes, Falcon Heavy is scheduled to lift off for the third time as early as June 22nd.

In support of the mission, SpaceX will need to completely integrate Falcon Heavy and prepare the rocket for a routine static fire test approximately one week prior to launch, sometime in mid-June. STP-2 will be critical to both SpaceX and the USAF for a number of reasons, ranging from rocket reusability to the future of US military launch procurement.

Rapid Falcon Heavy reuse

From a technological standpoint, Falcon Heavy Flight 3 will be a milestone in large part due to its reuse of two Falcon Heavy side boosters, previously flown on April 11th as part of Falcon Heavy’s Arabsat 6A commercial launch debut. Around eight minutes after launching the ~6450 kg (14,200 lb) satellite on its way to an exceptionally high transfer orbit of 90,000 km (56,000 mi), side boosters B1052 and B1053 completed flawless landings at LZ-1 and LZ-2.

Both boosters were quickly ‘broken over’ (brought horizontal) and transported to Pad 39A’s main hangar for inspection and refurbishment. Relative to almost all other Block 5 boosters, Falcon Heavy Flight 2’s side boosters were subjected to a uniquely gentle reentry thanks to a lower velocity stage separation. As such, they should be easier to turn around than most, but given that the boosters are also acting as partial pathfinders for the reuse of actual Falcon Heavy hardware, they are unlikely to break any records.

Sadly, the first Falcon Heavy Block 5 center core – B1055 – was toppled in high seas while still aboard drone ship Of Course I Still Love You (OCISLY), cutting short any possibility of future reuses of the thoroughly scorched booster. For unknown reasons, be it an unrelated USAF requirement or SpaceX simply choosing caution, plans already accounted for a new center core flying on STP-2, although both Arabsat 6A side boosters were to be reused. Believed to be B1057, that new Falcon Heavy center core completed its Texas acceptance testing in late April and shipped to Cape Canaveral, Florida soon after.

An Air Force first

Aside from offering a chance for SpaceX to tie its 72-day Falcon 9 turnaround record twice, STP-2 has unexpectedly become a keystone of the US military’s interest in certifying flight-proven rockets for military launches. The USAF has described the reuse of Falcon Heavy boosters on STP-2 as a step forward for all future reusable launch vehicles, but the reality is that SpaceX is and will remain the only player in town until 2022 at the earliest. The next closest entrant – Blue Origin’s New Glenn rocket – is unlikely to be ready for its launch debut before late ’21 or early ’22. ULA’s “SMART” reuse of Vulcan rocket engine sections is unlikely to be ready before the mid-2020s, likely 2024-2026.

SpaceX, however, has already reused Falcon 9 boosters more than 20 times on orbital-class missions, and the frequency of reuse is only likely to increase with the introduction of the final major Falcon 9 and Heavy upgrade, known as Block 5. Designed with a nominal lifespan of 10+ launches, each booster can support a huge number of missions and also offers the potential to dramatically reduce launch costs down the road. Additionally, as noted by VP of Launch Reliability Hans Koenigsmann, SpaceX firmly believes that reliability will come hand in hand with routine reuse, as each recovered booster can serve as a treasure trove of data. Thanks to reusability, SpaceX can fill recoverable boosters to the brim with cameras and gather full-resolution telemetry otherwise inaccessible for an expendable rocket.

Mission complete! Taken by Airmen Alex Preisser, this photo shows B1052 and B1053 shortly after coming to a rest at SpaceX's Landing Zones.
Falcon Heavy Block 5 side boosters B1052 and B1053 rest at Spacex’s Florida Landing Zones after a flawless launch debut. (USAF – Alex Preisser)

The matter of launch costs is not a particularly significant concern of the US military, mainly a consequence of the incredibly disproportionate relationship between the cost of launch and the cost the military satellite payloads. An excellent example of this disparity can be found in SpaceX’s December 2018 launch of the USAF’s first GPS III satellite: SpaceX’s launch contract cost $82M, while the Lockheed Martin-built spacecraft aboard cost no less than ~$600M.

However, reusable rockets are quite plainly the future of space launch, evidenced by SpaceX’s meteoric rise and rapid cannibalization of the global commercial launch market. As a partial result, the survival of ULA – a Lockheed Martin-Boeing cooperative that builds the Delta IV and Atlas V rockets – is almost completely dependent upon military development and launch contracts. Blue Origin, however, is now offering the promise of an independently stable launch provider thanks to continual funding from owner Jeff Bezos, and reusability will be an absolute necessity if its massive New Glenn rocket is to succeed.

The first Block 5 version of Falcon Heavy prepares for its launch debut, April 2019. (SpaceX)

In short, the USAF is faced with a simple proposition: get behind reusable rockets or risk falling behind. SpaceX is more than happy to ease the conservative military branch into the new era, and Falcon Heavy’s STP-2 launch will be a major step in the right direction. Thanks to its reuse of two side boosters, Air Force officials will be able to observe the process of rapid refurbishment firsthand, providing information they will then use to develop certification requirements for flight-proven rockets. More generally, STP-2 will also act as a dedicated demonstration that SpaceX and the USAF will use to fully certify Falcon Heavy for military launches, hopefully ending Delta IV Heavy’s decade-long monopoly over military heavy lift.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX shades airline for seeking contract with Amazon’s Starlink rival

Published

on

Credit: Richard Angle

SpaceX employees, including its CEO Elon Musk, shaded American Airlines on social media this past weekend due to the company’s reported talks with Amazon’s Starlink rival, Leo.

Starlink has been adopted by several airlines, including United Airlines, Qatar Airways, Hawaiian Airlines, WestJet, Air France, airBaltic, and others. It has gained notoriety as an extremely solid, dependable, and reliable option for airline travel, as traditional options frequently cause users to lose connection to the internet.

Many airlines have made the switch, while others continue to mull the options available to them. American Airlines is one of them.

A report from Bloomberg indicates the airline is thinking of going with a Starlink rival owned by Amazon, called Leo. It was previously referred to as Project Kuiper.

American CEO Robert Isom said (via Bloomberg):

“While there’s Starlink, there are other low-Earth-orbit satellite opportunities that we can look at. We’re making sure that American is going to have what our customers need.”

Isom also said American has been in touch with Amazon about installing Leo on its aircraft, but he would not reveal the status of any discussions with the company.

The report caught the attention of Michael Nicolls, the Vice President of Starlink Engineering at SpaceX, who said:

“Only fly on airlines with good connectivity… and only one source of good connectivity at the moment…”

CEO Elon Musk replied to Nicolls by stating that American Airlines risks losing “a lot of customers if their connectivity solution fails.”

There are over 8,000 Starlink satellites in orbit currently, offering internet coverage in over 150 countries and territories globally. SpaceX expands its array of satellites nearly every week with launches from California and Florida, aiming to offer internet access to everyone across the globe.

SpaceX successfully launches 100th Starlink mission of 2025

Currently, the company is focusing on expanding into new markets, such as Africa and Asia.

Continue Reading

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

Investor's Corner

SpaceX IPO is coming, CEO Elon Musk confirms

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon. Musk replied, basically confirming it.

Published

on

elon musk side profile
Joel Kowsky, Public domain, via Wikimedia Commons

Elon Musk confirmed through a post on X that a SpaceX initial public offering (IPO) is on the way after hinting at it several times earlier this year.

It also comes one day after Bloomberg reported that SpaceX was aiming for a valuation of $1.5 trillion, adding that it wanted to raise $30 billion.

Musk has been transparent for most of the year that he wanted to try to figure out a way to get Tesla shareholders to invest in SpaceX, giving them access to the stock.

He has also recognized the issues of having a public stock, like litigation exposure, quarterly reporting pressures, and other inconveniences.

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon.

Musk replied, basically confirming it:

Berger believes the IPO would help support the need for $30 billion or more in capital needed to fund AI integration projects, such as space-based data centers and lunar satellite factories. Musk confirmed recently that SpaceX “will be doing” data centers in orbit.

AI appears to be a “key part” of SpaceX getting to Musk, Berger also wrote. When writing about whether or not Optimus is a viable project and product for the company, he says that none of that matters. Musk thinks it is, and that’s all that matters.

It seems like Musk has certainly mulled something this big for a very long time, and the idea of taking SpaceX public is not just likely; it is necessary for the company to get to Mars.

The details of when SpaceX will finally hit that public status are not known. Many of the reports that came out over the past few days indicate it would happen in 2026, so sooner rather than later.

But there are a lot of things on Musk’s plate early next year, especially with Cybercab production, the potential launch of Unsupervised Full Self-Driving, and the Roadster unveiling, all planned for Q1.

Continue Reading