Connect with us

News

SpaceX breaks pad turnaround record with two Falcon 9 launches in six days

Two launches from the same SpaceX pad in less than six days. (Richard Angle)

Published

on

SpaceX has completed its 43rd launch of 2022 and 62nd dedicated Starlink launch overall, breaking a launch pad turnaround record in the process.

That pad – Cape Canaveral Space Force Station (CCSFS) Launch Complex 40 (LC-40) – is the single most important cog in SpaceX’s Falcon 9 launch machine, significantly increasing the significance of what might otherwise be ‘just’ another broken record for a company that is famous for never settling.

Following several delays linked to another weather-plagued Starlink launch (4-34) that flew out of the same pad, a Falcon 9 rocket lifted off from LC-40 on SpaceX’s Starlink 4-35 mission at 7:32 pm EDT (23:32 UTC), Saturday, September 24th. As usual, the mission used a flight-proven Falcon 9 booster (B1073), two flight-proven payload fairing halves, and an expendable second stage. As usual, all four components performed flawlessly, and a new batch of 52 Starlink V1.5 satellites was deployed about 15 minutes after liftoff.

Just the latest of dozens completed since May 2019, SpaceX’s Starlink missions have become extraordinarily routine – a testament to the company’s relentless pursuit of perfection, given just how difficult it is to successfully launch a rocket once. 62 dedicated Starlink launches later, Falcon 9 has successfully delivered every single Starlink satellite it has ever carried (almost 3400 spacecraft) into the proper orbit, losing only two boosters in the process.

Advertisement

But even though the missions have become routine, SpaceX has spent every waking second optimizing its rockets and operations to squeeze more performance and more cadence out of each part. The results can only be described as a resounding success. In 2018 and 2019, SpaceX launched an average of 17 Falcon rockets per year. SpaceX’s annual cadence grew to 26 launches in 2020 and 31 in 2021.

That progress pales next to the cadence SpaceX is on track to achieve in 2022. In less than nine months, the company has completed 43 Falcon 9 launches. Before the end of July, barely six months into the year, SpaceX had beaten its annual record of 31 launches. If it can maintain the same average pace it’s sustained over the last 12 months, SpaceX could realistically complete 58 Falcon launches in 2022. If it continues the even more impressive pace it’s achieved in Q3 (~17 launches), it could manage 60+ launches this year.

Only one other rocket family in history (the Soviet R-7) has successfully completed more launches in a calendar year.

SpaceX, of course, has no plans to accept the potentially record-breaking launch cadence it’s achieved as a new status quo. Just two-thirds of the way through 2022, CEO Elon Musk revealed that SpaceX is targeting up to 100 launches in 2023. As previously reported on Teslarati, while that figure seems implausible at first glance, it was still within the realm of possibility given SpaceX’s already established capabilities.

Advertisement

Just a few weeks later, Musk’s 100-launch target has gone from barely within reach to a serious – if still unlikely – possibility thanks to the record SpaceX broke with Starlink 4-35. SpaceX’s latest Starlink mission lifted off from LC-40 just 5.97 days after Starlink 4-34 launched from the same pad, smashing its old turnaround record (7.67 days) by almost 25%.

For LC-40, already SpaceX’s workhorse pad and the source of the company’s fastest pad turnaround, the new record means, in theory, that one of its three pads can now singlehandedly support up to 60 Falcon 9 launches per year. Assuming that any launch pad can or will sustainably operate close to its record turnaround time for an entire year would be unwise. But, at minimum, the new record gives SpaceX new margins that it can use to significantly increase LC-40’s annual cadence in a more sustainable way. In 2022, LC-40 has averaged 12.7 days per launch. In Q3, it’s on track to average about 10.3 days per launch.

One of three SpaceX pads, LC-40 is the source of almost half of Falcon 9’s 43 launches this year. (SpaceX)
One pad; two launches; six days. (SpaceX)

Most importantly, there’s evidence that SpaceX didn’t simply manage a heroic one-time feat with Starlink 4-35. Confirmed by Next Spaceflight, Ben Cooper, and airspace restriction filings, SpaceX has tentative plans to launch Starlink 4-36 from LC-40 as early as 6:36 pm EDT on Friday, September 30th – a turnaround slightly faster than the new record. Another Falcon 9 launch out of LC-40 – EchoStar’s Galaxy 33/34 mission – could follow Starlink 4-36 as early as October 5th, although that mission is more likely to slip a day or two.

There’s a big risk that Storm/Hurricane Ian will create unacceptable weather conditions, forcing SpaceX to delay the launch, but for now, there’s still a chance.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading