Connect with us

News

SpaceX’s ninth Starlink launch gets a boost from first all-women weather crew

SpaceX's next Starlink launch is scheduled just over 24 hours from now and will be assisted by the first all-women weather crew in the history of US launch operations. (Richard Angle)

Published

on

SpaceX’s second Starlink launch of the month is currently tracking towards a June 13th liftoff from Cape Canaveral, Florida.

In order for a rocket launch to get off the ground, however, a perfect mix of ingredients must come together. One of the most crucial ingredients is the weather. Behind the scenes, the U.S. Space Force’s 45th Weather Squadron of the 45th Space Wing Operations Group – based out of Patrick Air Force Base – works diligently to monitor and predict weather conditions leading up to and at the time of liftoff. Every rocket launch that lifts off from Kennedy Space Center or Cape Canaveral Air Force Station utilizes the weather monitoring services provided by the 45th Weather Squadron and SpaceX – the most prolific US launch company is – no different.

The first all-female weather team is pictured inside the 45th Weather Squadron Operations Center at Morrell Operations Center of the Cape Canaveral Air Force Station. From left to right – Capt Nancy Zimmerman, O-3, Launch Weather Director; Ms. Arlena Moses, GS-13, Lead Launch Weather Officer; Melody Lovin, GS-13, Reconnaissance Launch Weather Officer; Ms. Jessica Williams, GS-13, Radar Launch Weather Officer; Maj Emily Graves, O-4, Launch Weather Commander; and A1C Hannah Mulcahey,  E-3, Duty Forecaster. (Photo Credit: Richard Angle for Teslarati)

For SpaceX’s upcoming Starlink V1 L8 Rideshare Program mission, the entire weather team on console is female, a first in program history. The team is made up of six women all responsible for specific roles that must coordinate and work cohesively to monitor the weather and determine when it is safe to launch the Falcon 9.

The diverse team is comprised of military personnel and civilian weather officers. It is overseen by Maj Emily Graves, Launch Weather Commander, and orchestrated by Capt. Nancy Zimmerman, Launch Weather Director. A Lead Launch Weather Officer, Arlena Moses, coordinates information between the launch customer, SpaceX, and the 45th while three other members constantly monitor and decipher mountains of weather data.

Airman 1st class Hannah Mulcahey serves as Duty Forecaster and Jessica Williams serves as Radar Launch Weather Officer. Williams is responsible for monitoring information produced by a series of systems every three minutes. She monitors radar data for the amount of precipitation, clouds that are present in the area, and the thickness of the clouds among other things. This information is used to determine whether or not the rocket’s flight path is safe for the duration of the mission. Thick clouds can be an indicator of an unstable atmosphere capable of producing electricity – either naturally as cloud produced lightning or lightning produced by a rocket thrusting through the unstable atmosphere called triggered lightning.

Should radar information be too ambiguous or overexaggerated, the Reconnaissance Launch Weather Officer, Melody Lovin, coordinates the mission with a reconnaissance aircraft known as Weather One. For SpaceX’s upcoming launch, Weather One will only be activated if there is going to be bad weather present for launch, a small possibility if the launch date slips. Other launch customers such as NASA or United Launch Alliance will sometimes have Weather One in the air on standby throughout the duration of the countdown to launch dependent on mission constraints.

Advertisement
-->
Melody Lovin, GS-13, Reconnaissance Launch Weather Officer and Ms. Jessica Williams, GS-13, Radar Launch Weather Officer sit in front of an extensive display of monitors inside the 45th Weather Squadron Operations Center at Morrell Operations Center of the Cape Canaveral Air Force Station. (Photo Credit: Richard Angle for Teslarati)

When Launch Weather Director, Capt Nancy Zimmerman, was asked during a media teleconference about how this historical assignment came about, she stated that it was pure coincidence. “It was happenstance. The flight commander of space lift, my supervisor, actually created a team, as he always does, and was like ‘Huh, this is actually an all-female team. Have we ever done this?’ And looking back through the database, you know, it hasn’t been done and he was like ‘Well, should we do this?’ and I said ‘Yes, let’s do it.’” Zimmerman said .

A primary factor enabling an all-female led launch weather team is simply that the workforce of the 45th Weather Squadron is now comprised of more females than ever before. According to Lovin, “We simply have more women on the team. Before we only had one and that was from the year 2000 to 2018 and 2018 came around and a lot of resident launch weather officers left and they also decided to expand the unit.” She went on to state that the massive uptick in launches from the Cape Canaveral Air Force Station and Kennedy Space Center was a driving factor of the weather unit expansion, “when they expanded the unit they hired three more women, so that means we have six women on the team.”

Ms. Arlena Moses, GS-13, Lead Launch Weather Officer (U.S. Air Force photo by Airman Thomas Sjoberg)

The personnel of the 45th Weather Squadron work day in and day out to monitor and forecast weather conditions ensuring safe air and space operation all year round. When it comes to rocket launches, watching the weather begins early and is done frequently. Weather patterns in central Florida can change rapidly causing a rocket launch attempt to be scrubbed completely, which is what occurred with SpaceX’s first attempt to launch NASA astronauts Bob Behnken and Doug Hurley to the International Space Station.

A storm passes over LC-39A at Florida’s Kennedy Space Center before an ultimately scrubbed launch attempt of Crew Dragon’s May 2020 NASA astronaut launch debut. (Richard Angle)

Understanding and tracking developing weather patterns of central Florida allows the 45th Weather Squadron to create launch mission execution forecasts that outline a possibility of violation (POV) of specific launch weather constraints ahead of a launch attempt and any planned backup attempts. These comprehensive forecasts cover everything from systems like frontal boundaries that influence area weather to the type of clouds expected at the time of launch. The forecasts are put together based on a series of ten Lightning Launch Commit Criteria rules and a series of user-defined constraint rules that are specific to each mission and launch vehicle such as SpaceX’s Falcon 9 or United Launch Alliance’s Atlas V for example.

The ten lightning launch commit criteria rules have been in place since the 1980s when an Atlas-Centaur rocket was ultimately lost due to triggered lightning. The rocket launched into a highly unstable and electrified atmosphere full of thick clouds creating the conditions necessary to trigger a lightning strike of the vehicle. It lost its navigation system and began to dangerously veer from its course. It was then destroyed in-flight by launch teams.

Given the high degree of uncertainty of Florida weather, a well-versed team of highly trained weather professionals is a necessary piece of the puzzle that is rocket launching. For the first time, that team is made up of incredibly inspiring females that undoubtedly will make the correct GO/NO GO call on launch day.

For SpaceX’s first Starlink SmallSat Rideshare Program mission, targeted to launch no earlier than (NET) Saturday, June 13 at 5:21 a.m. EDT (09:21 UTC), the 45th Weather Squadron team predicts a 30% chance of violation – meaning that weather is 70% GO for launch. The primary concern is a bank of cumulus clouds expected to be in the area. You can view the full launch mission execution forecast on the 45th Weather Squadron’s website.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Advertisement
-->

Space Reporter.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading