Connect with us

News

SpaceX’s ninth Starlink launch gets a boost from first all-women weather crew

SpaceX's next Starlink launch is scheduled just over 24 hours from now and will be assisted by the first all-women weather crew in the history of US launch operations. (Richard Angle)

Published

on

SpaceX’s second Starlink launch of the month is currently tracking towards a June 13th liftoff from Cape Canaveral, Florida.

In order for a rocket launch to get off the ground, however, a perfect mix of ingredients must come together. One of the most crucial ingredients is the weather. Behind the scenes, the U.S. Space Force’s 45th Weather Squadron of the 45th Space Wing Operations Group – based out of Patrick Air Force Base – works diligently to monitor and predict weather conditions leading up to and at the time of liftoff. Every rocket launch that lifts off from Kennedy Space Center or Cape Canaveral Air Force Station utilizes the weather monitoring services provided by the 45th Weather Squadron and SpaceX – the most prolific US launch company is – no different.

The first all-female weather team is pictured inside the 45th Weather Squadron Operations Center at Morrell Operations Center of the Cape Canaveral Air Force Station. From left to right – Capt Nancy Zimmerman, O-3, Launch Weather Director; Ms. Arlena Moses, GS-13, Lead Launch Weather Officer; Melody Lovin, GS-13, Reconnaissance Launch Weather Officer; Ms. Jessica Williams, GS-13, Radar Launch Weather Officer; Maj Emily Graves, O-4, Launch Weather Commander; and A1C Hannah Mulcahey,  E-3, Duty Forecaster. (Photo Credit: Richard Angle for Teslarati)

For SpaceX’s upcoming Starlink V1 L8 Rideshare Program mission, the entire weather team on console is female, a first in program history. The team is made up of six women all responsible for specific roles that must coordinate and work cohesively to monitor the weather and determine when it is safe to launch the Falcon 9.

The diverse team is comprised of military personnel and civilian weather officers. It is overseen by Maj Emily Graves, Launch Weather Commander, and orchestrated by Capt. Nancy Zimmerman, Launch Weather Director. A Lead Launch Weather Officer, Arlena Moses, coordinates information between the launch customer, SpaceX, and the 45th while three other members constantly monitor and decipher mountains of weather data.

Airman 1st class Hannah Mulcahey serves as Duty Forecaster and Jessica Williams serves as Radar Launch Weather Officer. Williams is responsible for monitoring information produced by a series of systems every three minutes. She monitors radar data for the amount of precipitation, clouds that are present in the area, and the thickness of the clouds among other things. This information is used to determine whether or not the rocket’s flight path is safe for the duration of the mission. Thick clouds can be an indicator of an unstable atmosphere capable of producing electricity – either naturally as cloud produced lightning or lightning produced by a rocket thrusting through the unstable atmosphere called triggered lightning.

Advertisement

Should radar information be too ambiguous or overexaggerated, the Reconnaissance Launch Weather Officer, Melody Lovin, coordinates the mission with a reconnaissance aircraft known as Weather One. For SpaceX’s upcoming launch, Weather One will only be activated if there is going to be bad weather present for launch, a small possibility if the launch date slips. Other launch customers such as NASA or United Launch Alliance will sometimes have Weather One in the air on standby throughout the duration of the countdown to launch dependent on mission constraints.

Melody Lovin, GS-13, Reconnaissance Launch Weather Officer and Ms. Jessica Williams, GS-13, Radar Launch Weather Officer sit in front of an extensive display of monitors inside the 45th Weather Squadron Operations Center at Morrell Operations Center of the Cape Canaveral Air Force Station. (Photo Credit: Richard Angle for Teslarati)

When Launch Weather Director, Capt Nancy Zimmerman, was asked during a media teleconference about how this historical assignment came about, she stated that it was pure coincidence. “It was happenstance. The flight commander of space lift, my supervisor, actually created a team, as he always does, and was like ‘Huh, this is actually an all-female team. Have we ever done this?’ And looking back through the database, you know, it hasn’t been done and he was like ‘Well, should we do this?’ and I said ‘Yes, let’s do it.’” Zimmerman said .

A primary factor enabling an all-female led launch weather team is simply that the workforce of the 45th Weather Squadron is now comprised of more females than ever before. According to Lovin, “We simply have more women on the team. Before we only had one and that was from the year 2000 to 2018 and 2018 came around and a lot of resident launch weather officers left and they also decided to expand the unit.” She went on to state that the massive uptick in launches from the Cape Canaveral Air Force Station and Kennedy Space Center was a driving factor of the weather unit expansion, “when they expanded the unit they hired three more women, so that means we have six women on the team.”

Ms. Arlena Moses, GS-13, Lead Launch Weather Officer (U.S. Air Force photo by Airman Thomas Sjoberg)

The personnel of the 45th Weather Squadron work day in and day out to monitor and forecast weather conditions ensuring safe air and space operation all year round. When it comes to rocket launches, watching the weather begins early and is done frequently. Weather patterns in central Florida can change rapidly causing a rocket launch attempt to be scrubbed completely, which is what occurred with SpaceX’s first attempt to launch NASA astronauts Bob Behnken and Doug Hurley to the International Space Station.

A storm passes over LC-39A at Florida’s Kennedy Space Center before an ultimately scrubbed launch attempt of Crew Dragon’s May 2020 NASA astronaut launch debut. (Richard Angle)

Understanding and tracking developing weather patterns of central Florida allows the 45th Weather Squadron to create launch mission execution forecasts that outline a possibility of violation (POV) of specific launch weather constraints ahead of a launch attempt and any planned backup attempts. These comprehensive forecasts cover everything from systems like frontal boundaries that influence area weather to the type of clouds expected at the time of launch. The forecasts are put together based on a series of ten Lightning Launch Commit Criteria rules and a series of user-defined constraint rules that are specific to each mission and launch vehicle such as SpaceX’s Falcon 9 or United Launch Alliance’s Atlas V for example.

The ten lightning launch commit criteria rules have been in place since the 1980s when an Atlas-Centaur rocket was ultimately lost due to triggered lightning. The rocket launched into a highly unstable and electrified atmosphere full of thick clouds creating the conditions necessary to trigger a lightning strike of the vehicle. It lost its navigation system and began to dangerously veer from its course. It was then destroyed in-flight by launch teams.

Given the high degree of uncertainty of Florida weather, a well-versed team of highly trained weather professionals is a necessary piece of the puzzle that is rocket launching. For the first time, that team is made up of incredibly inspiring females that undoubtedly will make the correct GO/NO GO call on launch day.

Advertisement

For SpaceX’s first Starlink SmallSat Rideshare Program mission, targeted to launch no earlier than (NET) Saturday, June 13 at 5:21 a.m. EDT (09:21 UTC), the 45th Weather Squadron team predicts a 30% chance of violation – meaning that weather is 70% GO for launch. The primary concern is a bank of cumulus clouds expected to be in the area. You can view the full launch mission execution forecast on the 45th Weather Squadron’s website.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Space Reporter.

Advertisement
Comments

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading

Elon Musk

Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site

The update came in a post from the xAI Memphis account on social media platform X.

Published

on

Credit: xAI Memphis

xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts. 

The update came in a post from the xAI Memphis account on social media platform X.

In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie. 

“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote. 

Advertisement

xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.

The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.

xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.

Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.

Advertisement
Continue Reading