News
SpaceX’s next Starship launch still waiting on a successful Raptor test
Several days after the last test attempt, SpaceX’s next Starship launch remains delayed pending a successful static fire of the prototype’s three Raptor engines.
Delivered from SpaceX’s Boca Chica, Texas rocket factory to nearby launch and test facilities on December 22nd, less than two weeks after Starship serial number 8’s (SN8) high-altitude launch debut, successor Starship SN9 completed its first crucial test on December 29th. Known as a cryogenic proof test, SN9 was loaded either partially or fully with a large volume of liquid nitrogen to simulate the thermal stresses caused by liquid methane and oxygen propellant and ensure that pad systems and the rocket’s plethora of valves, pipes, and avionics were working as expected.
Cryoproof more or less completed on schedule, SN9’s follow-up static fire test continued in a similarly smooth fashion, with the first attempt once again falling within a planned three-day window – albeit on January 6th, the last of those three days. Near the end of the 8 am to 5 pm window, Starship SN9 ignited all three preinstalled Raptor engines but NASASpaceflight.com ultimately revealed that the test had been shorter than SpaceX expected.
Relative to all previous Starship testing, even ignoring the facts that a handling error damaged SN9 just one month ago and that the rocket is only the second prototype to have a full nose section installed and plumbed, SN9’s test campaign has been smooth. Despite the unique hurdles SN9 faced, the Starship completed a cryoproof and a static fire on its first respective day of attempts. Minor slips along the way – including recent static fire re-do delays – simply serve as a reminder that the Starship program and its prototypes have yet to reach operational maturity.
Why SN9’s first static fire ended prematurely is unclear and could have been caused by just about anything. The fact that all three Raptors shut down early points a finger to something other than the engines themselves and the clean abort SN9 seemingly commanded points to a relatively minor issue as far as rocket prototypes go.
Two days later, SpaceX tried again but had even less luck, seemingly never making it more than 10-20 minutes into a usual 40-60 minute static fire test flow in several consecutive attempts. Due to an apparent agreement with Cameron County to avoid road closures on the weekend, Starship SN9’s next shot at a second static fire was delayed three days to Monday, January 11th. Possibly due to high winds and generally unfavorable weather, Monday’s static fire attempt was called off before the window opened.
Later that day, SpaceX delivered notices confirming that the next SN9 static fire attempt was now scheduled no earlier than (NET) 8 am to 5 pm CST (UTC-6) on Tuesday, January 12th. Whether SN9 actually pulls off a full-duration static fire, weather forecasts remain unfavorable for a low-velocity, high-altitude launch. Cancelled FAA Temporary Flight Restrictions (TFRs) more or less confirmed SpaceX’s agreement with those forecasts, leaving Starship SN9’s 12.5 km (~7.8 mi) launch debut scheduled no earlier than Friday, January 15th or Saturday, January 16th.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.