Connect with us

News

SpaceX’s orbital Starship prototype gets frosty during first successful ‘cryoproof’

Starship S20 lets off some steam with a vent 200+ feet long during its first cryoproof test. (NASASpaceflight - bocachicagal)

Published

on

For the first time, SpaceX has put the first orbital-class Starship – a prototype known as Ship 20 (S20) – through a routine cryogenic proof test, filling the rocket with several hundred tons of liquid nitrogen to simulate its explosive propellant.

While it’s impossible to jump to conclusions before members of the public can return to the pad to take photos or CEO Elon Musk takes to Twitter to discuss the results, Ship 20’s first ‘cryoproof’ appears to have been largely successful [Edit: Musk has confirmed that the test went well]. Relative to the almost three-dozen cryoproofs SpaceX has completed with more than a dozen other Starship, booster, and test tank prototypes over the last two years, though, Ship 20’s first major test still has some oddities.

Historically, every cryoproof of a full Starship prototype has been visually unique and virtually impossible to predict. Without any direct insight from SpaceX or Elon on the objectives, plan, or timeline of tests, the process of watching tests (via unofficial webcams, of course) and attempting to interpret why certain things look the way they do or what’s going on at any given moment is a bit trying to interpret eroded hieroglyphics.

At the most basic level, cryogenic tanking tests – whether with Starship, Super Heavy, or test tanks and liquid oxygen (LOx)/methane (LCH4) propellant or neutral liquid nitrogen (LN2) – are fairly simple. The vehicle is attached to pad systems, powered on, and partially or fully loaded with cryogenic fluids. Once the desired test objectives are achieved or attempted, the vehicle is then detanked (drained of propellant or LN2).

Thanks to the fact that they’re incredibly cold (-160 to -200C; -260 to -330F), the LOx/LCH4 or LN2 Starships are filled with quickly chill the thin steel tanks containing them. With no insulation to speak of, that supercooled steel then freezes water vapor out of the humid South Texas air, creating a layer of frost/ice that generally follows the level of the cryogenic liquids in Starship’s tanks. Throughout that process, those cryogenic liquids inevitably come into contact with ambient-temperature Starship tanks and plumbing (white-hot in comparison) and warm up, boiling off into gas as a result.

Advertisement

A gaseous chemical is far less dense than its liquid form, meaning that the pressure inside Starship’s fixed tanks can rapidly become unmanageable after even a small amount of boiloff. To maintain the correct tank pressures, Starship – like all other rockets – occasionally vents off the gas that forms. And thus, the two main methods of interpreting the hieroglyphics that are cryoproof tests: frost levels and venting.

Compared to earlier prototypes, Starship S20’s first cryoproof has been… unusual. Most notably, SpaceX began loading the rocket with liquid nitrogen around 8pm CDT. Its LOx (bottom) and CH4 (top) tanks were then slowly filled to around 30-50% of their full volume over the next hour. However, rather than detanking, SpaceX then partially drained the methane tank but filled the LOx tank further before leaving the LOx tank more or less fully filled for more than two hours, occasionally topping it off with fresh liquid nitrogen.

Several giant vents almost four hours after testing began tricked even the most experienced of ‘Tank Watchers.’

Then, almost four hours after LN2 loading began, Starship performed several massive vents. Ordinarily, given the hours of testing prior, those vents would have assuredly been detank vents – effectively depressurizing Starship’s tanks as they’re drained of fluid. However, those vents instead coincided with the rapid loading of one or several hundred more tons of LN2, seemingly topping off Starship S20 in the process. Around that point, it’s possible that SpaceX began the pressure testing portion of Ship 20’s cryoproof, (mostly) closing the rocket’s vents and allowing the pressure to gradually increase to flight levels (and maybe even higher).

Many, many months ago, when SpaceX was deep into cryoproofing the first full-size Starship prototypes, Musk revealed an operating pressure goal of 6 bar (~90 psi). Ships were eventually successfully tested above 8 bar (~115 psi), giving Starship a healthy ~30% safety margin. As the first orbital-class Starship prototype, Ship 20 likely needs to hit those tank pressures more so than any ship before it to have a shot at surviving its orbital launch debut and orbital-velocity reentry attempt.

Starship S20’s first (aborted) cryogenic proof test attempt, September 27th. (NASASpaceflight – bocachicagal)
A demonstration of the kind of forces and pressures involved with SpaceX’s building-sized Starship SN1 prototype in February 2020.

Beyond the basics of cryoproofing, Starship S20 also marked a crucial step forward on September 29th/30th, becoming the first ship to complete a cryoproof test with a full heat shield installed. While it’s impossible to judge exactly how well S20’s ~15,000-tile heat shield performed, views from public webcams showed no obvious signs of tiles shattering and falling off as Starship repeatedly cooled and warmed – contracting and expanding as a result. Additionally, still in contact with the air, the steel tank skin under a majority of Ship 20’s tiles would have likely covered itself in a layer of frost and ice, but the heat shield appeared to handle that invisible change without issue.

It’s possible that dozens or hundreds of tiles bumped together and chipped or cracked in a manner too subtle to be visible on LabPadre or NASASpaceflight webcasts, but that can only be confirmed or denied when the road reopens and local photographers can capture higher-resolution views of Starship. For now, it appears that Ship 20’s first cryoproof was highly successful, hopefully opening the door for Raptor installation and static fire testing in the near future. Stay tuned for more!

Advertisement

Update: As is almost tradition by now, SpaceX CEO Elon Musk didn’t take long to tweet about the results of Starship S20’s first cryoproof, confirming that the “proof was good!”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y reclaims elusive sales title in competitive market

As more EVs have entered the market and some at better prices, Tesla’s Model Y has been put up against some very attractive options.

Published

on

Credit: Tesla

The Tesla Model Y reclaimed an elusive sales title in one of the most competitive markets it is in, outpacing key rivals and formidable competitors to regain the crown it once was a shoe-in for.

As more EVs have entered the market and some at better prices, Tesla’s Model Y has been put up against some very attractive options.

This is especially prudent in Europe and China, where domestic car companies have been offering attractive and cheap EVs as Tesla alternatives.

However, in September, the Model Y was able to battle back and take over the top sales spot for EVs in Europe.

In September, it had 25,938 sales, and although it was an 8.6 percent decrease compared to the same month in 2024, it was enough to be labeled the best-selling car in the European market, Automotive News reported.

500-mile test proves why Tesla Model Y still humiliates rivals in Europe

There are four vehicles that have been atop the European EV sales rankings for any given month this year: the Renault Clio, which has three titles, the Dacia Sandero, which has won four monthly sales titles, and the Volkswagen T-Roc, which was the best-selling car in the market in August.

The Clio captured the number-two spot in September with 20,146 sales.

Despite a strong September showing for the Model Y, which was its first monthly sales crown of the year, the vehicle has not been a top-three EV in Europe this year. That is still led by the Sandero, Clio, and T-Roc.

Despite that, Tesla’s Model Y is still likely to be one of the best-selling vehicles in the world, if not the best, for the year.

In the United States, it has dominated EV sales charts and has been one of the most popular cars in the region. The same goes for China, where the Model Y has more competition than in Europe, but is so attractive because of its premium look and feel, as well as its tech offerings.

The Model Y has been the best-selling car globally for the past two years, outpacing widely popular gas and EV models from around the world.

Tesla also just finished up its best three-month sales period in its history, delivering just shy of half a million vehicles from July to September.

Continue Reading

News

Tesla dashcam video shows crazy plane crash avoidance maneuver

Published

on

Credit: @davidbellow | X

A Tesla captured video of a crashing plane on an Oklahoma highway, as a shocking video shows a small aircraft coming across a local roadway, with various cars ducking to avoid it.

On October 23, an Oklahoma National Guard OA-1K Skyraider II turboprop plane crashed during a training mission after an engine failure. Both crew members escaped unharmed, but they were not the only ones at risk of injury.

A Tesla Dashcam video shared by a friend of the car’s owner shows the vehicle narrowly avoiding an impact with the plane, swerving left, then back onto its side of the road. It appears to be a serious miracle:

David Bellow, the person who posted the video of the Tesla avoiding the plane, claims it was Full Self-Driving that performed the maneuver, but it is not confirmed. This is what he said:

There are a few hints that suggest it could be Tesla’s Full Self-Driving suite, but it is important to note that neither the company, the driver, nor the friend has confirmed this.

The first hint is the vehicle’s maneuver and subsequent reaction. The car suddenly swerves to the left, which any human would do, but how the vehicle continues to travel as if nothing had happened seems to solidify the idea that FSD could have been involved in avoiding the plane.

Nevertheless, this does not confirm that FSD was in control.

My Tesla did this on FSD (Supervised) v14.1 and the internet went crazy

Most people would likely have stopped in their tracks after avoiding an aircraft while driving.

However, this is not enough proof to definitively say FSD was responsible for the avoidance.

Additionally, the “Jump to Event” button is activated in the video, suggesting that FSD was in control. The vehicle gives this option when something major has occurred, including human intervention.

Regardless of whether the car was on FSD or was controlled manually, it is pretty crazy to have this piece of dashcam footage.

Continue Reading

News

Tesla Full Self-Driving got a minor feature that’s a massive improvement

“Brake Confirm for the Start Self-Driving button is now defaulted off. When disabled, Start Self-Driving will not require you to press and release the brake to confirm engagement.”

Published

on

Credit: Tesla

Tesla’s Full Self-Driving suite seems to get better with every single release. However, it is also making it more seamless and easier than ever to use for passenger travel, thanks to a recent feature that has flown under the radar.

Tesla started rolling out its v14 iteration of the Full Self-Driving suite a few weeks ago to Early Access Program (EAP) members, and it finally started making its way to the public for the first time earlier this week.

Tesla Full Self-Driving v14.1 first impressions: Robotaxi-like features arrive

The wide rollout of Tesla v14.1.3 was long-awaited, as its capabilities were flexed by the handful of people lucky to have it. However, those sitting with v13.2.9 were still eager to get to their hands on the new FSD version, especially considering it came with a lot of cool upgrades.

One of which is flying under the radar and not getting as much attention as it should. Although it is a minor feature change from v13, Tesla has made FSD more seamless than ever with a simple fix that it started utilizing with v14.

With v14.1.1, Tesla started rolling out the removal of the “Brake Confirm” feature, which required drivers to touch the brake to activate Full Self-Driving. This is now an optional feature, as it now is defaulted to the off position by the car.

The release notes for the feature state:

“Brake Confirm for the Start Self-Driving button is now defaulted off. When disabled, Start Self-Driving will not require you to press and release the brake to confirm engagement.

You can enable Brake Confirm in Autopilot > Brake Confirm.”

Simply put, you no longer need to touch the brake to confirm your intention to use Full Self-Driving, which is a small but very effective fix.

It makes your car much more active in terms of overall activation, and it is definitely a quicker and more streamlined departure from your current location than ever before.

Here’s a good look at how quick it is:

@teslarati With Tesla Full Self-Driving v14, there is no delay when you start FSD. Press “Start Self-Driving” and you’re on your way #fyp #viral #tesla #teslafsd #fsdv14 ♬ original sound – TESLARATI

The feature is small, but it is very noticeable with your first uses of FSD v14. Eventually, it will become even more streamlined as Tesla solves self-driving and autonomy, as it will require zero human intervention to get started, which means the “Start Self-Driving” button will also be removed.

Continue Reading

Trending