Connect with us

News

SpaceX’s orbital Starship prototype gets frosty during first successful ‘cryoproof’

Starship S20 lets off some steam with a vent 200+ feet long during its first cryoproof test. (NASASpaceflight - bocachicagal)

Published

on

For the first time, SpaceX has put the first orbital-class Starship – a prototype known as Ship 20 (S20) – through a routine cryogenic proof test, filling the rocket with several hundred tons of liquid nitrogen to simulate its explosive propellant.

While it’s impossible to jump to conclusions before members of the public can return to the pad to take photos or CEO Elon Musk takes to Twitter to discuss the results, Ship 20’s first ‘cryoproof’ appears to have been largely successful [Edit: Musk has confirmed that the test went well]. Relative to the almost three-dozen cryoproofs SpaceX has completed with more than a dozen other Starship, booster, and test tank prototypes over the last two years, though, Ship 20’s first major test still has some oddities.

Historically, every cryoproof of a full Starship prototype has been visually unique and virtually impossible to predict. Without any direct insight from SpaceX or Elon on the objectives, plan, or timeline of tests, the process of watching tests (via unofficial webcams, of course) and attempting to interpret why certain things look the way they do or what’s going on at any given moment is a bit trying to interpret eroded hieroglyphics.

At the most basic level, cryogenic tanking tests – whether with Starship, Super Heavy, or test tanks and liquid oxygen (LOx)/methane (LCH4) propellant or neutral liquid nitrogen (LN2) – are fairly simple. The vehicle is attached to pad systems, powered on, and partially or fully loaded with cryogenic fluids. Once the desired test objectives are achieved or attempted, the vehicle is then detanked (drained of propellant or LN2).

Thanks to the fact that they’re incredibly cold (-160 to -200C; -260 to -330F), the LOx/LCH4 or LN2 Starships are filled with quickly chill the thin steel tanks containing them. With no insulation to speak of, that supercooled steel then freezes water vapor out of the humid South Texas air, creating a layer of frost/ice that generally follows the level of the cryogenic liquids in Starship’s tanks. Throughout that process, those cryogenic liquids inevitably come into contact with ambient-temperature Starship tanks and plumbing (white-hot in comparison) and warm up, boiling off into gas as a result.

Advertisement

A gaseous chemical is far less dense than its liquid form, meaning that the pressure inside Starship’s fixed tanks can rapidly become unmanageable after even a small amount of boiloff. To maintain the correct tank pressures, Starship – like all other rockets – occasionally vents off the gas that forms. And thus, the two main methods of interpreting the hieroglyphics that are cryoproof tests: frost levels and venting.

Compared to earlier prototypes, Starship S20’s first cryoproof has been… unusual. Most notably, SpaceX began loading the rocket with liquid nitrogen around 8pm CDT. Its LOx (bottom) and CH4 (top) tanks were then slowly filled to around 30-50% of their full volume over the next hour. However, rather than detanking, SpaceX then partially drained the methane tank but filled the LOx tank further before leaving the LOx tank more or less fully filled for more than two hours, occasionally topping it off with fresh liquid nitrogen.

Several giant vents almost four hours after testing began tricked even the most experienced of ‘Tank Watchers.’

Then, almost four hours after LN2 loading began, Starship performed several massive vents. Ordinarily, given the hours of testing prior, those vents would have assuredly been detank vents – effectively depressurizing Starship’s tanks as they’re drained of fluid. However, those vents instead coincided with the rapid loading of one or several hundred more tons of LN2, seemingly topping off Starship S20 in the process. Around that point, it’s possible that SpaceX began the pressure testing portion of Ship 20’s cryoproof, (mostly) closing the rocket’s vents and allowing the pressure to gradually increase to flight levels (and maybe even higher).

Many, many months ago, when SpaceX was deep into cryoproofing the first full-size Starship prototypes, Musk revealed an operating pressure goal of 6 bar (~90 psi). Ships were eventually successfully tested above 8 bar (~115 psi), giving Starship a healthy ~30% safety margin. As the first orbital-class Starship prototype, Ship 20 likely needs to hit those tank pressures more so than any ship before it to have a shot at surviving its orbital launch debut and orbital-velocity reentry attempt.

Starship S20’s first (aborted) cryogenic proof test attempt, September 27th. (NASASpaceflight – bocachicagal)
A demonstration of the kind of forces and pressures involved with SpaceX’s building-sized Starship SN1 prototype in February 2020.

Beyond the basics of cryoproofing, Starship S20 also marked a crucial step forward on September 29th/30th, becoming the first ship to complete a cryoproof test with a full heat shield installed. While it’s impossible to judge exactly how well S20’s ~15,000-tile heat shield performed, views from public webcams showed no obvious signs of tiles shattering and falling off as Starship repeatedly cooled and warmed – contracting and expanding as a result. Additionally, still in contact with the air, the steel tank skin under a majority of Ship 20’s tiles would have likely covered itself in a layer of frost and ice, but the heat shield appeared to handle that invisible change without issue.

It’s possible that dozens or hundreds of tiles bumped together and chipped or cracked in a manner too subtle to be visible on LabPadre or NASASpaceflight webcasts, but that can only be confirmed or denied when the road reopens and local photographers can capture higher-resolution views of Starship. For now, it appears that Ship 20’s first cryoproof was highly successful, hopefully opening the door for Raptor installation and static fire testing in the near future. Stay tuned for more!

Advertisement

Update: As is almost tradition by now, SpaceX CEO Elon Musk didn’t take long to tweet about the results of Starship S20’s first cryoproof, confirming that the “proof was good!”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Waymo temporarily halts service in select San Francisco and LA areas amid protests

The suspensions came after several Waymo Jaguar I-Pace robotaxis were vandalized and set ablaze during the demonstrations.

Published

on

Credit: ABC7/YouTube

Waymo, Alphabet’s autonomous vehicle subsidiary, has suspended its driverless taxi operations in parts of Los Angeles and San Francisco amid violent protests linked to U.S. Immigration and Customs Enforcement (ICE) raids in the state. 

The suspensions came after several Waymo Jaguar I-Pace robotaxis were vandalized and set ablaze during the demonstrations.

Waymo Catches Strays Amid Anti-ICE Protests

Protests erupted in Los Angeles and San Francisco in response to the Trump administration’s immigration raids, which ultimately resulted in California Governor Gavin Newsom calling the White House’s deployment of National Guard troops unconstitutional. 

Amidst the protests, images and videos emerged showing several Waymo robotaxis being defaced and destroyed. At least five Waymo robotaxis ended up being caught in the crossfire, and at least one vehicle ended up being burned to the ground. 

The incident resulted in the Los Angeles Police Department advising people to avoid downtown areas due to toxic fumes from the robotaxis’ burning lithium-ion batteries. As noted in a KRON4 report, Waymo ultimately halted service in affected areas “out of an abundance of caution.”

Advertisement

Robotaxi Sentiments

The cost of the attacks is notable. Each Waymo robotaxi is valued between $150,000 and $200,000, per a 2024 Wall Street Journal report. Interestingly enough, this is not the first time that Waymo’s robotaxis ended up on the receiving end of angry protesters. On February 24, a Jaguar I-PACE robotaxi was set ablaze and vandalized by a crowd in San Francisco. Videos taken at the time showed a mob of people attacking the vehicle. 

Despite the recent attacks on its robotaxis, Waymo has stated it has “no reason to believe” its vehicles were specifically targeted during the protests, as per a report from The Washington Post. A company spokesperson also noted that some of the Waymo robotaxis that were defaced and destroyed during the violent demonstrations had been completing drop-offs near the protest zones.

Continue Reading

Investor's Corner

xAI targets $5 billion debt offering to fuel company goals

Elon Musk’s xAI is targeting a $5B debt raise, led by Morgan Stanley, to scale its artificial intelligence efforts.

Published

on

(Credit: xAI)

xAI’s $5 billion debt offering, marketed by Morgan Stanley, underscores Elon Musk’s ambitious plans to expand the artificial intelligence venture. The xAI package comprises bonds and two loans, highlighting the company’s strategic push to fuel its artificial intelligence development.

Last week, Morgan Stanley began pitching a floating-rate term loan B at 97 cents on the dollar with a variable interest rate of 700 basis points over the SOFR benchmark, one source said. A second option offers a fixed-rate loan and bonds at 12%, with terms contingent on investor appetite. This “best efforts” transaction, where the debt size hinges on demand, reflects cautious lending in an uncertain economic climate.

According to Reuters sources, Morgan Stanley will not guarantee the issue volume or commit its own capital in the xAI deal, marking a shift from past commitments. The change in approach stems from lessons learned during Musk’s 2022 X acquisition when Morgan Stanley and six other banks held $13 billion in debt for over two years.

Morgan Stanley and the six other banks backing Musk’s X acquisition could only dispose of that debt earlier this year. They capitalized on X’s improved operating performance over the previous two quarters as traffic on the platform increased engagement around the U.S. presidential elections. This time, Morgan Stanley’s prudent strategy mitigates similar risks.

Advertisement

Beyond debt, xAI is in talks to raise $20 billion in equity, potentially valuing the company between $120 billion and $200 billion, sources said. In April, Musk hinted at a significant valuation adjustment for xAI, stating he was looking to put a “proper value” on xAI during an investor call.

As xAI pursues this $5 billion debt offering, its financial strategy positions it to lead the AI revolution, blending innovation with market opportunity.

Continue Reading

News

SpaceX to debut new Dragon capsule in Axiom Space launch

Ax-4’s launch marks the debut of SpaceX’s latest Crew Dragon and pushes Axiom closer to building its own space station.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

Axiom Space’s Ax-4 mission targets the International Space Station (ISS) with a new SpaceX Crew Dragon capsule.

The Axiom team will launch a new SpaceX Dragon capsule atop a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida on Wednesday at 8:00 a.m. EDT (1200 GMT). The Ax-4 mission launch was initially set for Tuesday, June 10, but was delayed by one day due to expected high winds.

As Axiom Space’s fourth crewed mission to the ISS, Ax-4 marks the debut of an updated SpaceX Crew Dragon capsule. “This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Axiom Space is a Houston-based private space infrastructure company. It has been launching private astronauts to the ISS for research and training since 2022, building expertise for its future station. With NASA planning to decommission the ISS by 2030, Axiom has laid the groundwork for the Axiom Station, the world’s first commercial space station. The company has already begun construction on its ISS replacement.

Advertisement

The Ax-4 mission’s research, spanning biological, life, and material sciences and Earth observation, will support this ambitious goal. Contributions from 31 countries underscore the mission’s global scope. The four-person crew will launch from Launch Complex 39A, embarking on a 14-day mission to conduct approximately 60 scientific studies.

“The AX-4 crew represents the very best of international collaboration, dedication, and human potential. Over the past 10 months, these astronauts have trained with focus and determination, each of them exceeding the required thresholds to ensure mission safety, scientific rigor, and operational excellence,” said Allen Flynt, Axiom Space’s chief of mission services.

The Ax-4 mission highlights Axiom’s commitment to advancing commercial space exploration. By leveraging SpaceX’s Dragon capsule and conducting diverse scientific experiments, Axiom is paving the way for its Axiom Station. This mission not only strengthens international collaborations but also positions Axiom as a leader in the evolving landscape of private space infrastructure.

Continue Reading

Trending