News
SpaceX’s orbital Starship prototype gets frosty during first successful ‘cryoproof’
For the first time, SpaceX has put the first orbital-class Starship – a prototype known as Ship 20 (S20) – through a routine cryogenic proof test, filling the rocket with several hundred tons of liquid nitrogen to simulate its explosive propellant.
While it’s impossible to jump to conclusions before members of the public can return to the pad to take photos or CEO Elon Musk takes to Twitter to discuss the results, Ship 20’s first ‘cryoproof’ appears to have been largely successful [Edit: Musk has confirmed that the test went well]. Relative to the almost three-dozen cryoproofs SpaceX has completed with more than a dozen other Starship, booster, and test tank prototypes over the last two years, though, Ship 20’s first major test still has some oddities.
Historically, every cryoproof of a full Starship prototype has been visually unique and virtually impossible to predict. Without any direct insight from SpaceX or Elon on the objectives, plan, or timeline of tests, the process of watching tests (via unofficial webcams, of course) and attempting to interpret why certain things look the way they do or what’s going on at any given moment is a bit trying to interpret eroded hieroglyphics.
At the most basic level, cryogenic tanking tests – whether with Starship, Super Heavy, or test tanks and liquid oxygen (LOx)/methane (LCH4) propellant or neutral liquid nitrogen (LN2) – are fairly simple. The vehicle is attached to pad systems, powered on, and partially or fully loaded with cryogenic fluids. Once the desired test objectives are achieved or attempted, the vehicle is then detanked (drained of propellant or LN2).
Thanks to the fact that they’re incredibly cold (-160 to -200C; -260 to -330F), the LOx/LCH4 or LN2 Starships are filled with quickly chill the thin steel tanks containing them. With no insulation to speak of, that supercooled steel then freezes water vapor out of the humid South Texas air, creating a layer of frost/ice that generally follows the level of the cryogenic liquids in Starship’s tanks. Throughout that process, those cryogenic liquids inevitably come into contact with ambient-temperature Starship tanks and plumbing (white-hot in comparison) and warm up, boiling off into gas as a result.
A gaseous chemical is far less dense than its liquid form, meaning that the pressure inside Starship’s fixed tanks can rapidly become unmanageable after even a small amount of boiloff. To maintain the correct tank pressures, Starship – like all other rockets – occasionally vents off the gas that forms. And thus, the two main methods of interpreting the hieroglyphics that are cryoproof tests: frost levels and venting.
Compared to earlier prototypes, Starship S20’s first cryoproof has been… unusual. Most notably, SpaceX began loading the rocket with liquid nitrogen around 8pm CDT. Its LOx (bottom) and CH4 (top) tanks were then slowly filled to around 30-50% of their full volume over the next hour. However, rather than detanking, SpaceX then partially drained the methane tank but filled the LOx tank further before leaving the LOx tank more or less fully filled for more than two hours, occasionally topping it off with fresh liquid nitrogen.
Then, almost four hours after LN2 loading began, Starship performed several massive vents. Ordinarily, given the hours of testing prior, those vents would have assuredly been detank vents – effectively depressurizing Starship’s tanks as they’re drained of fluid. However, those vents instead coincided with the rapid loading of one or several hundred more tons of LN2, seemingly topping off Starship S20 in the process. Around that point, it’s possible that SpaceX began the pressure testing portion of Ship 20’s cryoproof, (mostly) closing the rocket’s vents and allowing the pressure to gradually increase to flight levels (and maybe even higher).
Many, many months ago, when SpaceX was deep into cryoproofing the first full-size Starship prototypes, Musk revealed an operating pressure goal of 6 bar (~90 psi). Ships were eventually successfully tested above 8 bar (~115 psi), giving Starship a healthy ~30% safety margin. As the first orbital-class Starship prototype, Ship 20 likely needs to hit those tank pressures more so than any ship before it to have a shot at surviving its orbital launch debut and orbital-velocity reentry attempt.

Beyond the basics of cryoproofing, Starship S20 also marked a crucial step forward on September 29th/30th, becoming the first ship to complete a cryoproof test with a full heat shield installed. While it’s impossible to judge exactly how well S20’s ~15,000-tile heat shield performed, views from public webcams showed no obvious signs of tiles shattering and falling off as Starship repeatedly cooled and warmed – contracting and expanding as a result. Additionally, still in contact with the air, the steel tank skin under a majority of Ship 20’s tiles would have likely covered itself in a layer of frost and ice, but the heat shield appeared to handle that invisible change without issue.
It’s possible that dozens or hundreds of tiles bumped together and chipped or cracked in a manner too subtle to be visible on LabPadre or NASASpaceflight webcasts, but that can only be confirmed or denied when the road reopens and local photographers can capture higher-resolution views of Starship. For now, it appears that Ship 20’s first cryoproof was highly successful, hopefully opening the door for Raptor installation and static fire testing in the near future. Stay tuned for more!
Update: As is almost tradition by now, SpaceX CEO Elon Musk didn’t take long to tweet about the results of Starship S20’s first cryoproof, confirming that the “proof was good!”
Elon Musk
Tesla engineers deflected calls from this tech giant’s now-defunct EV project
Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”
Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.
However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.
Apple canceling its EV has drawn a wide array of reactions across tech
It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.
Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”
Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.
In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”
Musk said in full:
“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”
Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.
Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.
Elon Musk
Tesla to a $100T market cap? Elon Musk’s response may shock you
There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.
However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.
To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:
“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”
Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.
SpaceX officially acquires xAI, merging rockets with AI expertise
Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”
It’s not impossible
— Elon Musk (@elonmusk) February 6, 2026
Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.
Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”