

SpaceX
SpaceX’s first orbital Starship begins assembly as steel heat shield passes tests
SpaceX CEO Elon Musk says that the company’s South Texas workforce has already begun to fabricate the first orbital-class Starship prototype, while Hawthorne engineers and technicians are in the midst of performing small-scale testing of the vehicle’s unprecedented stainless steel heat shield.
To be assembled out of hexagonal tiles of (presumably) stainless steel, Starship’s metallic heat shield will be one of the most crucial aspects of the orbital spacecraft, particularly with respect to ensuring that it’s extraordinarily easy to reuse. To survive extreme interplanetary-velocity reentry conditions at Mars, Earth, and beyond and remain in a functional, flight-ready condition after landing, SpaceX will need to implement the world’s first orbital-class, large-scale metallic heat shield with an immature technology known as transpirational cooling.
By quite literally drilling tiny holes (pores) into heat shield plates at the hottest parts of Starship’s hull, transpirational cooling effectively allows a large portion of the heat of reentry to be wicked away by the flash evaporation of a liquid, typically water. For SpaceX’s Starship, it’s likely that the coolant of choice would be either liquid water or liquid methane, the former of which offers better cooling per unit of mass at the cost of added plumbing complexity and spaceship mass, while the latter would make use of the same propellant fueling the ship at the cost of worse cooling per unit of mass. Either way, SpaceX will be heading into unproven territory, demanding extensive ground and flight testing to first ensure that the concept is truly viable and then to verify that it can be made as reliable and reusable as it simply has to be.
Tests like those shown on March 17th by Musk indicate that SpaceX is indeed deep into the process of extensive and often destructive testing, something the company has proven to be exceptionally good at. It’s unclear if the above test of Starship’s hexagonal heat shield tiles – likely made out of a variant of 300-series stainless steel – involved tiles with active or passive cooling, but Musk suggested that the hot-spots created with spin-forming torches reached temperatures as high as 1650 Kelvin (2500ºF/1400ºC. Unlike the ablative heat shields SpaceX is familiar with building and operating through its Crew and Cargo Dragon spacecraft, a stainless steel heat shield would be expected to almost entirely resist erosion (i.e. ablation) during extremely high-velocity reentries of at least 12-14 km/s (~31,000 mph, Mach 40+).
Update on the fairing and the unknown “2nd fairing” pic.twitter.com/5PMBYyBDAi— Austin Barnard? (@austinbarnard45) March 16, 2019
Meanwhile, Musk also confirmed that SpaceX has decided to skip constructing a replacement nosecone/fairing for Starhopper, a functional Starship prototype that will be used to conduct extremely short hop tests like Falcon 9’s development-era Grasshopper and F9R test articles. Over the last several weeks, SpaceX technicians have been rapidly assembling what was initially assumed to be the replacement fairing Musk had previously suggested would be built. Instead, the duo of stainless steel barrel sections – relying on steel much thinner than the heavy-duty stuff used to build Starhopper – are apparently the beginnings of the first orbital-class Starship prototype, said by Musk to be aiming for flight-readiness as early as June 2019 around two months ago.
While still an extraordinarily ambitious target for a vehicle that has yet to conduct any integrated hops or flight-tests in any form, the fact that SpaceX is began the process of building the first orbital Starship in late February could actually give the company’s engineers and technicians a fighting chance to complete Starhopper testing and Starship assembly over the next 90-100 days.
If stacked atop each other, the two new steel sections in work would likely stretch a solid 20-30 meters (65-100 ft) tall. Meanwhile, the first orbital-grade tank domes and/or conical nose section is also in the process of being welded together out of smaller segments, already fast approaching something ready to be installed inside the steel barrel sections.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk reveals SpaceX’s target for Starship’s 10th launch
Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.

Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.
Musk says SpaceX is aiming for a timeline of roughly three weeks from now, which would come about ten weeks after the previous launch.
Coincidentally, it would bring the two launches 69 days apart, and if you know anything about Elon Musk, that would be an ideal timeline between two launches.
🚨 Just wanted you to know, Starship 10’s projected test flight date, according to Grok, is August 4.
Starship’s ninth test flight took place on May 27.
August 4 is 69 days after May 27.
Do with that what you will. 🚀 https://t.co/IISpT08rIy
— TESLARATI (@Teslarati) July 16, 2025
SpaceX is coming off a test flight in which it lost both the Super Heavy Booster and the Upper Stage in the previous launch. The Super Heavy Booster was lost six minutes and sixteen seconds into the flight, while SpaceX lost communication with the Ship at 46 minutes and 48 seconds.
Musk is aiming for the tenth test flight to take place in early August, he revealed on X:
Launching again in ~3 weeks
— Elon Musk (@elonmusk) July 14, 2025
This will be SpaceX’s fourth test flight of the Starship program in 2025, with each of the previous three flights bringing varying results.
IFT-7 in January brought SpaceX its second successful catch of the Super Heavy Booster in the chopstick arms of the launch tower. The ship was lost after exploding during its ascent over the Turks and Caicos Islands.
IFT-8 was on March 6, and SpaceX caught the booster once again, but the Upper Stage was once again lost.
The most recent flight, IFT-9, took place on May 27 and featured the first reused Super Heavy Booster. However, both the Booster and Upper Stage were lost.
The Federal Aviation Administration (FAA) hit SpaceX with a mishap investigation for Flight 9 on May 30.
News
SpaceX’s Crew-11 mission targets July 31 launch amid tight ISS schedule
The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida.

NASA and SpaceX are targeting July 31 for the launch of Crew-11, the next crewed mission to the International Space Station (ISS). The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida, using the Crew Dragon Endeavour and a Falcon 9 booster.
Crew Dragon Endeavour returns
Crew-11 will be the sixth flight for Endeavour, making it SpaceX’s most experienced crew vehicle to date. According to SpaceX’s director of Dragon mission management, Sarah Walker, Endeavour has already carried 18 astronauts representing eight countries since its first mission with NASA’s Bob Behnken and Doug Hurley in 2020, as noted in an MSN report.
“This Dragon spacecraft has successfully flown 18 crew members representing eight countries to space already, starting with (NASA astronauts) Bob (Behnken) and Doug (Hurley) in 2020, when it returned human spaceflight capabilities to the United States for the first time since the shuttle retired in July of 2011,” Walker said.
For this mission, Endeavour will debut SpaceX’s upgraded drogue 3.1 parachutes, designed to further enhance reentry safety. The parachutes are part of SpaceX’s ongoing improvements to its human-rated spacecraft, and Crew-11 will serve as their first operational test.
The Falcon 9 booster supporting this launch is core B1094, which has launched in two previous Starlink missions, as well as the private Ax-4 mission on June 25, as noted in a Space.com report.
The four-members of Crew-11 are NASA astronauts Zena Cardman and Mike Fincke, as well as Japan’s Kimiya Yui and Russia’s Oleg Platonov.
Tight launch timing
Crew-11 is slated to arrive at the ISS just as NASA coordinates a sequence of missions, including the departure of Crew-10 and the arrival of SpaceX’s CRS-33 mission. NASA’s Bill Spetch emphasized the need for careful planning amid limited launch resources, noting the importance of maintaining station altitude and resupply cadence.
“Providing multiple methods for us to maintain the station altitude is critically important as we continue to operate and get the most use out of our limited launch resources that we do have. We’re really looking forward to demonstrating that capability with (CRS-33) showing up after we get through the Crew-11 and Crew-10 handover,” Spetch stated.
News
SpaceX launches Ax-4 mission to the ISS with international crew
The SpaceX Falcon 9 launched Axiom’s Ax-4 mission to ISS. Ax-4 crew will conduct 60+ science experiments during a 14-day stay on the ISS.

SpaceX launched the Falcon 9 rocket kickstarting Axiom Space’s Ax-4 mission to the International Space Station (ISS). Axiom’s Ax-4 mission is led by a historic international crew and lifted off from Kennedy Space Center’s Launch Complex 39A at 2:31 a.m. ET on June 25, 2025.
The Ax-4 crew is set to dock with the ISS around 7 a.m. ET on Thursday, June 26, 2025. Axiom Space, a Houston-based commercial space company, coordinated the mission with SpaceX for transportation and NASA for ISS access, with support from the European Space Agency and the astronauts’ governments.
The Ax-4 mission marks a milestone in global space collaboration. The Ax-4 crew, commanded by U.S. astronaut Peggy Whitson, includes Shubhanshu Shukla from India as the pilot, alongside mission specialists Sławosz Uznański-Wiśniewski from Poland and Tibor Kapu from Hungary.
“The trip marks the return to human spaceflight for those countries — their first government-sponsored flights in more than 40 years,” Axiom noted.
Shukla’s participation aligns with India’s Gaganyaan program planned for 2027. He is the first Indian astronaut to visit the ISS since Rakesh Sharma in 1984.
Axiom’s Ax-4 mission marks SpaceX’s 18th human spaceflight. The mission employs a Crew Dragon capsule atop a Falcon 9 rocket, designed with a launch escape system and “two-fault tolerant” for enhanced safety. The Axiom mission faced a few delays due to weather, a Falcon 9 leak, and an ISS Zvezda module leak investigation by NASA and Roscosmos before the recent successful launch.
As the crew prepares to execute its scientific objectives, SpaceX’s Ax-4 mission paves the way for a new era of inclusive space research, inspiring future generations and solidifying collaborative ties in the cosmos. During the Ax-4 crew’s 14-day stay in the ISS, the astronauts will conduct nearly 60 experiments.
“We’ll be conducting research that spans biology, material, and physical sciences as well as technology demonstrations,” said Whitson. “We’ll also be engaging with students around the world, sharing our experience and inspiring the next generation of explorers.”
SpaceX’s Ax-4 mission highlights Axiom’s role in advancing commercial spaceflight and fostering international partnerships. The mission strengthens global space exploration efforts by enabling historic spaceflight returns for India, Poland, and Hungary.
-
Elon Musk1 week ago
Waymo responds to Tesla’s Robotaxi expansion in Austin with bold statement
-
News1 week ago
Tesla exec hints at useful and potentially killer Model Y L feature
-
Elon Musk1 week ago
Elon Musk reveals SpaceX’s target for Starship’s 10th launch
-
Elon Musk1 week ago
Tesla ups Robotaxi fare price to another comical figure with service area expansion
-
News1 week ago
Tesla’s longer Model Y did not scale back requests for this vehicle type from fans
-
News1 week ago
“Worthy of respect:” Six-seat Model Y L acknowledged by Tesla China’s biggest rivals
-
News1 week ago
First glimpse of Tesla Model Y with six seats and extended wheelbase
-
Elon Musk1 week ago
Elon Musk confirms Tesla is already rolling out a new feature for in-car Grok