Connect with us

SpaceX

SpaceX’s first orbital Starship begins assembly as steel heat shield passes tests

CEO Elon Musk posted a video of SpaceX engineers testing a small section of a Starship heat shield prototype. (Elon Musk/SpaceX)

Published

on

SpaceX CEO Elon Musk says that the company’s South Texas workforce has already begun to fabricate the first orbital-class Starship prototype, while Hawthorne engineers and technicians are in the midst of performing small-scale testing of the vehicle’s unprecedented stainless steel heat shield.

To be assembled out of hexagonal tiles of (presumably) stainless steel, Starship’s metallic heat shield will be one of the most crucial aspects of the orbital spacecraft, particularly with respect to ensuring that it’s extraordinarily easy to reuse. To survive extreme interplanetary-velocity reentry conditions at Mars, Earth, and beyond and remain in a functional, flight-ready condition after landing, SpaceX will need to implement the world’s first orbital-class, large-scale metallic heat shield with an immature technology known as transpirational cooling.

By quite literally drilling tiny holes (pores) into heat shield plates at the hottest parts of Starship’s hull, transpirational cooling effectively allows a large portion of the heat of reentry to be wicked away by the flash evaporation of a liquid, typically water. For SpaceX’s Starship, it’s likely that the coolant of choice would be either liquid water or liquid methane, the former of which offers better cooling per unit of mass at the cost of added plumbing complexity and spaceship mass, while the latter would make use of the same propellant fueling the ship at the cost of worse cooling per unit of mass. Either way, SpaceX will be heading into unproven territory, demanding extensive ground and flight testing to first ensure that the concept is truly viable and then to verify that it can be made as reliable and reusable as it simply has to be.

Tests like those shown on March 17th by Musk indicate that SpaceX is indeed deep into the process of extensive and often destructive testing, something the company has proven to be exceptionally good at. It’s unclear if the above test of Starship’s hexagonal heat shield tiles – likely made out of a variant of 300-series stainless steel – involved tiles with active or passive cooling, but Musk suggested that the hot-spots created with spin-forming torches reached temperatures as high as 1650 Kelvin (2500ºF/1400ºC. Unlike the ablative heat shields SpaceX is familiar with building and operating through its Crew and Cargo Dragon spacecraft, a stainless steel heat shield would be expected to almost entirely resist erosion (i.e. ablation) during extremely high-velocity reentries of at least 12-14 km/s (~31,000 mph, Mach 40+).

Meanwhile, Musk also confirmed that SpaceX has decided to skip constructing a replacement nosecone/fairing for Starhopper, a functional Starship prototype that will be used to conduct extremely short hop tests like Falcon 9’s development-era Grasshopper and F9R test articles. Over the last several weeks, SpaceX technicians have been rapidly assembling what was initially assumed to be the replacement fairing Musk had previously suggested would be built. Instead, the duo of stainless steel barrel sections – relying on steel much thinner than the heavy-duty stuff used to build Starhopper – are apparently the beginnings of the first orbital-class Starship prototype, said by Musk to be aiming for flight-readiness as early as June 2019 around two months ago.

While still an extraordinarily ambitious target for a vehicle that has yet to conduct any integrated hops or flight-tests in any form, the fact that SpaceX is began the process of building the first orbital Starship in late February could actually give the company’s engineers and technicians a fighting chance to complete Starhopper testing and Starship assembly over the next 90-100 days.

If stacked atop each other, the two new steel sections in work would likely stretch a solid 20-30 meters (65-100 ft) tall. Meanwhile, the first orbital-grade tank domes and/or conical nose section is also in the process of being welded together out of smaller segments, already fast approaching something ready to be installed inside the steel barrel sections.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real

The Super Heavy booster’s feat was so impressive that the whole maneuver almost looked like it was AI-generated.

Published

on

Credit: SpaceX/X

SpaceX has shared a video of a remarkable feat achieved by Starship’s Super Heavy booster during its 11th flight test.

The Super Heavy booster’s feat was so impressive that the whole maneuver, which was captured on video, almost looked like it was AI-generated.

Super Heavy’s picture perfect hover

As could be seen in the video shared by SpaceX, Starship’s Super Heavy booster, which is nearly 400 feet tall, smoothly returned to Earth and hovered above the Gulf of America for a few seconds before it went for its soft water landing. The booster’s picture-perfect maneuver before splashing down all but capped a near-flawless mission for Starship, which is about to enter its V3 era with Flight 12.

The booster’s balance and stability were so perfect that some users on X joked that the whole thing looked AI-generated. Considering the size of Super Heavy, as well as the fact that the booster was returning from space, the hovering display all but showed that SpaceX is dead serious about keeping its dominant lead in the spaceflight sector.

Starship V2’s curtain call

As noted in a Space.com report, Flight Test 11 achieved every major goal SpaceX had set for the mission, including deploying Starlink mass simulators, relighting Raptor engines in space, and executing a stable reentry for both the Starship Upper Stage and the Super Heavy booster. The feat also marked the second time a Super Heavy booster has been reflown, a milestone in SpaceX’s quest to make the entire Starship system fully reusable.

Advertisement

Starship’s V2 vehicle will now give way to the upgraded Starship V3, which is designed for faster turnaround and higher payload capacity. The Starship program is expected to pursue even more aggressive targets in the coming months as well, with Elon Musk stating on social media platform X that SpaceX will attempt a tower catch for Starship Upper Stage as early as spring 2026.

Continue Reading

Elon Musk

Starship’s next chapter: SpaceX eyes tower catch after flawless Flight 11

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Published

on

Credit: SpaceX

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Following Flight 11’s flawless mission, Musk noted on X that SpaceX will be aiming to catch the Starship Upper Stage with its launch tower as early as spring 2026. This should pave the way for SpaceX to start optimizing Starship for maximum reusability.

Flight 11 closes the Starship V2 chapter on a high note

Starship’s eleventh flight, which launched from Starbase, Texas, achieved every major mission objective. The Super Heavy booster completed a successful ascent, hover, and soft splashdown in the Gulf of America, while the upper stage executed an orbit burn, deployed Starlink simulators, and returned with a controlled reentry over the Indian Ocean.

This mission officially closed the chapter on the second-generation Starship and first-generation Super Heavy booster, and it set the stage for a redesigned vehicle built for orbital payload missions, propellant transfer, and beyond. It should be noted that Elon Musk has mentioned on X that Starship V3, at least if things go well, might be capable of reaching Mars.

Elon Musk confirms tower catch attempt set for spring

After Flight 11’s success, Musk confirmed that SpaceX will attempt to catch the Starship Upper Stage with its launch tower arms, fondly dubbed by the spaceflight community as “chopsticks,” in the coming months. Musk’s announcement came as a response to an X user who asked when the tower could start catching the Starship Upper Stage. In his reply, Musk simply wrote “Springtime.” 

Advertisement

Starship’s reusability is a key feature of the spacecraft, with SpaceX aiming to achieve a launch cadence that is almost comparable to conventional aircraft. For such a scenario to be feasible, launch tower catches of both Starship’s Upper Stage and its Super Heavy booster have to be routine.

Continue Reading

Elon Musk

SpaceX is preparing to launch Starship V2 one final time

The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

Published

on

Credit: SpaceX/X

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era. 

Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.

Starship V3 and beyond

Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet. 

“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”

Starship V2’s final mission

Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.

Advertisement

“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns. 

“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.

Continue Reading

Trending