Connect with us

News

SpaceX’s first orbital-class Starship stretches ‘wings’ ahead of Raptor installation

SpaceX unleashed Starship S20's flaps for the first time on Sunday. (NASASpaceflight)

Published

on

SpaceX’s first orbital-class Starship prototype was spotted stretching its ‘wings’ on Sunday after completing a successful cryogenic proof test late last week.

While minor relative to almost any other testing milestone, the small step still serves as a reminder that the end goal of Ship 20’s test campaign is a launch on Super Heavy to orbital altitudes and velocities. If that launch goes more or less according to plan, Starship will then attempt to survive an orbital-class reentry for the first time, subjecting it to extreme heat and putting its many thousands of heat shield tiles through their most daunting challenge yet. Dozens of things could (and probably will) go wrong, while almost every system aboard must work perfectly to ensure that Starship makes it through reentry in one piece.

And even if all of that occurs as planned with no major issues, those same systems will still need to hold on for several more minutes to perform a freefall, engine reignition, flip, and landing maneuver that only two other Starship prototypes have completed. As it so happens, one of those crucial systems is Starship’s flaps.

Outfitted with actuators powered by Tesla Model 3/Y motors and a pair of Model S batteries, Starship’s four large ‘flaps’ are only capable of simple flapping motions. While they may look the part, Starship flaps aren’t wings and are specifically designed not to produce lift. Instead, in support of Starship’s unusual descent profile, they act more like the hands and legs of a skydiver (particularly one in a wingsuit), allowing ships to control their pitch, attitude, and roll while freefalling belly-down to the ground. In theory, that allows Starship to gain practically all of the benefit of a structural wing like that on the Space Shuttle but for a far lower mass penalty.

Instead of elegantly slowing down with wings, Starship uses its flaps to create as much drag as possible during descent, slowing down to a terminal velocity around 100 m/s (~225 mph) or less. Using a freefall trajectory and flaps incapable of generating lift does likely come at the cost of “crossrange performance,” referring to how far Starship can travel horizontally in Earth’s atmosphere after reentry. However, significant crossrange performance is almost entirely irrelevant outside of Cold War paranoia like the kind that NASA let influence the Shuttle’s design to an ultimately catastrophic degree. Landing vertically also precludes the need for exceptionally long, expensive runways like those the Shuttle needed.

Advertisement
-->
A cutaway view of one of Shuttle’s wing elevon hinges and associated seals. (NASA)
Space Shuttle Endeavor shows off its heat shield (and flaps) during an on-orbit inspection in 2007. (NASA)

Aside from allowing it to navigate to a small vertical landing pad (or massive ‘Mechazilla’ catch tower), Starship’s flaps are also important for controlling vehicle orientation and heading during reentry itself. To fill that role, those flaps will have to be able to actuate across their full range of motion during reentry, as Starship’s hypersonic assault against the thin upper atmosphere creates a flood of superheated plasma that wants nothing more to find the gaps in its heat shield. Shuttle engineers had to deal with the same issue, ultimately designing complex seals that would allow the vehicle’s wing and body flaps to actuate during reentry without allowing superheated plasma to leak inside and damage their fragile mechanisms or structure.

Although Starship does have the benefit of relying on steel – not aluminum – for almost all of its structures, it still has to grapple with the same challenges of shielding sensitive electronics, actuators, motors, and more from the reentry onslaught that its heat shield and steel structure are designed to survive.

(NASASpaceflight – bocachicagal)
Starship’s flaps practically sit flush with their aerocover heat shielding when installed. (NASASpaceflight – bocachicagal)

Half-covered in heat shield tiles, it’s not clear how SpaceX plans to seal off the more sensitive, exposed components of each flap’s actuation mechanism – including motors, cabling, and the hinge itself. Based on what’s visible, Starship’s flaps and the cradle-like ‘aerosurfaces’ they slot into do have very tight tolerances and may rely on some felt-like ceramic wool or TPS blanket to seal the tiny remaining gaps. With small enough gaps, a hypersonic airstream can behave as if there are no gaps at all, suggesting that that might be SpaceX’s preferred approach to sealing Starship flaps.

Up next on Starship S20’s path to launch is the reinstallation of 3-6 Raptor engines (for the third time) ahead of a crucial static fire test campaign that could begin as early as Thursday, October 7th. Likely beginning with 1-3 Raptors, SpaceX will perform an unknown number of static fire tests, ultimately culminating in the first ignition of 4, 5, and 6 engines on any Starship prototype. If all goes well, that testing will also mark the first time Raptor Vacuum has been ignited on a Starship prototype and the first time SpaceX has ignited multiple Raptor variants (sea level and vacuum, in this case) on the same vehicle. Stay tuned for updates on engine installation.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s lawsuit against OpenAI and Microsoft is heading to jury trial

The ruling keeps alive claims that OpenAI misled the Tesla CEO about its charitable purpose while accepting billions of dollars in funding.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

OpenAI Inc. and Microsoft will face a jury trial this spring after a federal judge rejected their efforts to dismiss Elon Musk’s lawsuit, which accuses the artificial intelligence startup of abandoning its original nonprofit mission. The ruling keeps alive claims that OpenAI misled the Tesla CEO about its charitable purpose while accepting billions of dollars in funding.

As noted in a report from Bloomberg News, a federal judge in Oakland, California, ruled that OpenAI Inc. and Microsoft failed to show that Musk’s claims should be dismissed. U.S. District Judge Yvonne Gonzalez Rogers stated that while the evidence remains unclear, Musk has maintained that OpenAI “had a specific charitable purpose and that he attached two fundamental terms to it: that OpenAI be open source and that it would remain a nonprofit — purposes consistent with OpenAI’s charter and mission.”

Judge Gonzalez Rogers also rejected an argument by OpenAI suggesting that Musk’s use of an intermediary to donate $38 million in seed money to the company stripped him of legal standing. “Holding otherwise would significantly reduce the enforcement of a large swath of charitable trusts, contrary to the modern trend,” Judge Gonzalez Rogers wrote.

The judge also declined to dismiss Musk’s fraud allegations, citing internal OpenAI communications from 2017 involving co-founder Greg Brockman. In an email cited by the judge, fellow OpenAI board member Shivon Zilis informed Musk that Brockman would “like to continue with the non-profit structure.”

Advertisement
-->

Just two months later, however, Brockman wrote in a private note that he “cannot say that we are committed to the non-profit. don’t want to say that we’re committed. if three months later we’re doing b-corp then it was a lie.”

Marc Toberoff, a member of Musk’s legal team, said Judge Gonzalez Rogers’s ruling confirms that “there is substantial evidence that OpenAI’s leadership made knowingly false assurances to Mr. Musk about its charitable mission that they never honored in favor of their personal self-enrichment.”

OpenAI, for its part, maintained that Musk’s legal efforts are baseless. In a statement, the AI startup said it is looking forward to the upcoming trial. “Mr. Musk’s lawsuit continues to be baseless and a part of his ongoing pattern of harassment, and we look forward to demonstrating this at trial. We remain focused on empowering the OpenAI Foundation, which is already one of the best resourced nonprofits ever,” OpenAI stated.

Continue Reading

News

Tesla arsonist who burned Cybertruck sees end of FAFO journey

The man has now reached the “Find Out” stage.

Published

on

Credit: U.S. Attorney’s Office, District of Arizona

A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated. 

The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.

A five-year sentence

U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.

As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.

Advertisement
-->

Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members. 

The “Finding Out” stage

U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable. 

“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”

Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible. 

“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”

Advertisement
-->
Continue Reading

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Advertisement
-->
Continue Reading