News
SpaceX ready to begin training astronauts for first private spacewalk
Two members of the “Polaris Program” say that SpaceX could begin training private astronauts for the first private spacewalk in spaceflight history as early as May or June 2022.
Revealed earlier this year, the Polaris Program is a sort of hybridization of orbital spaceflight tourism and technology development and has one primary goal: to “rapidly advance human spaceflight capabilities.” Created in partnership with SpaceX by billionaire and Shift4 Payments founder Jared Isaacman, who also funded and flew on SpaceX’s first private Crew Dragon launch, Polaris aims to pick up where Inspiration4 left off last year.
While it will still be affiliated with and seek to help St. Jude Children’s Research Hospital, the Polaris Program will focus on the development of several crucial technologies that SpaceX will need to accomplish its ultimate goal of spreading humanity throughout our solar system.
One of those crucial technologies is a cheap, reliable, and easy-to-use spacesuit that will allow future SpaceX astronauts to work outside of the safety of their spacecraft in the vacuum of space, and, one day, walk on the surfaces of other planets and moons. For Crew Dragon, SpaceX has already developed an ‘intra-vehicular activity’ or IVA pressure suit that all Dragon astronauts must wear during mission-critical maneuvers. In the event of capsule depressurization, the suits would be able to keep Dragon astronauts alive inside the capsule for at least a few days, supplying them with clean air and maintaining enough pressure to avoid altitude sickness (or worse).
However, because IVA suits generally prioritize unpressurized mobility, the astronauts inside them can do very little when the suits are fully pressurized. At sea level, every person on Earth is subjected to standard atmospheric pressure, which amounts to about 101 kilopascals or 14.5 pounds per square inch. In a spacesuit, the suit itself must maintain a pocket of air at similar pressures, ultimately meaning that the outer skin of a suit must resist the same force. To put that into context, even operating at the absolute minimum pressures that humans can realistically tolerate and use (4-6 psi), simply moving one’s arm in an IVA suit could require hundreds of pounds or kilograms of force.

Even in NASA’s aging extra-vehicular activity (EVA) spacesuits, which feature mechanical joints and other upgrades meant to make movement and life easier inside them, spacewalks are one of the most brutal and exhausting physical activities conceivable, requiring extraordinary levels of near-constant exertion for hours on end. According to comments made to Spaceflight Now by Jared Isaacman and by pilot Scott Poteet in an interview covered by AmericaSpace, SpaceX’s first EVA suit will be quite basic. To some extent, they will be heavily modified versions of SpaceX’s existing IVA suit design, but with much more advanced thermal management, an improved helmet/visor, and – most importantly – the addition of a number of mechanized joints.


As was the case with early NASA EVA suits developed in the 1960s, SpaceX’s first EVA suits will receive consumables, power, and communications through cables (tethers) that connect to Dragon’s life support. It will take SpaceX some time to develop a miniaturized, portable life support system as safe and capable as the packs used on NASA’s EVA suits. A tethered EVA suit will still allow SpaceX or private astronauts to perform EVAs and work on or inspect the exterior of their Crew Dragon or Starship spacecraft – capabilities that could save lives in certain emergency scenarios. SpaceX’s first priority, then, will be to make sure that the basics work well in space and that the suits actually allow astronauts to perform tasks that require good finger and limb dexterity without immediately exhausting themselves.
“You’re adding lots of redundancies in the suit that don’t exist today, since it’s more last line of defense,” Isaacman said, referring to the differences between SpaceX’s current suit and the new extravehicular spacesuit. “You have a new visor, new seals, then mobility, joints everywhere for increased mobility and dexterity in the fingers and such. I think, visually, it will be more along the lines of what it currently looks like, but very much like a new suit.”
Spaceflight Now – May 10th, 2022
The first of up to three Polaris missions – Polaris Dawn – is currently scheduled to launch as early as November 2022. All four private astronauts – made up of two Polaris employees and two SpaceX employees – will wear the new EVA suits in place of their usual IVA suits, while only two members of the crew will ultimately attempt to exit the capsule and perform a single EVA that could last roughly 30-90 minutes. To do so, the entire Dragon will be depressurized and one of two hatches opened will be opened, while the the other two EVA-suited astronauts will simply remain in their seats. Regardless of the outcome, it will be the first private spacewalk in the history of spaceflight.
The astronauts training to prepare for Polaris Dawn will focus heavily on the EVA, offering either the two chosen crew members or all four candidates an opportunity to experience deep-sea diving and test EVA suits both underwater and inside a Dragon capsule simulator.
Beyond supporting SpaceX’s EVA spacesuit development, Polaris Dawn’s crew will also conduct a range of science experiments, attempt to connect to high-speed internet in orbit through Starlink laser links, and even try to break the record for the highest Earth orbit reached by a crewed spacecraft (1400 km / 870 mi).
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.