News
SpaceX is ready to build the first Starship destined for space after latest tests
After a busy several days of rocket hardware testing, Elon Musk says that SpaceX may be ready to build the first Starship prototype destined for space.
According to Musk, one test in particular – performed in South Texas just yesterday – is an encouraging sign that SpaceX’s Starship team is becoming increasingly competent at building the massive steel parts that will ultimately make up the generation launch vehicle. For SpaceX, the particular skills and expertise needed to precisely and consistently build a launch vehicle – let alone a rocket as large and complex as Starship – are quite a bit different from those it has mastered with Falcon 9, Falcon Heavy, and Dragon.
A lot of the expertise – particularly engineering talent, countless lessons-learned, and insight into reusability – is directly transferable from Falcon rockets to SpaceX’s Starship/Super Heavy program. Where it really isn’t transferable, however, is in the methods required to actually build the steel subcomponents that must ultimately be assembled together to form the rocket’s upper stage and booster. As a result, SpaceX has spent more than a year focused on building, testing, scrapping, improving, and re-testing any number of critical Starship components. Over the last four weeks (and last few days in particular), that testing has come to a head and Elon Musk believes the results have opened the door for SpaceX to begin building its first space-bound Starship prototypes.

SpaceX’s latest round of full-scale Starship hardware tests began just 10-20 days ago, depending on how one counts. Back around the start of the new calendar year, SpaceX began rapidly integrating two new Starship bulkheads and two cylindrical steel rings (barrel sections), ultimately delivering a finished ‘test tank’ after just 20 days of work. On January 10th, scarcely 24 hours after the two halves of the test tank were welded together, SpaceX sent the Starship test tank to its nearby launch pad and pressurized it with water until it quite literally burst.

Musk tweeted the results of that intentional test-to-destruction just a few hours after it was completed, revealing that SpaceX’s upgraded production and integration techniques enabled the tank to survive pressures almost 20% greater than the minimum Starships will need to perform orbital launches.
“Critically, the tank reached a maximum sustained pressure of 7.1 bar (103 psi), 18% more than the operating pressure (6 bar/87 psi) Musk says Starship prototypes will need to begin orbital test flights. At 7.1 bar, the test tank would have been experiencing an incredible ~20,000 metric tons (45 million lbf) of force spread out over its interior surfaces — equivalent to ~20% of the weight of an entire US Navy aircraft carrier. Perhaps even more impressive, that same Starship test tank was built from almost nothing extremely quickly, going from first weld to said pressurization test in just three weeks (20 days).
With relatively minor improvements to welding conditions and the manufacturing precision of Starship rings and domes, Musk believes that SpaceX can reliably build Starships and Super Heavy boosters to survive pressures greater than 8.5 bar (125 psi), guaranteeing a safety margin of at least 40%. Even a minor improvement of ~6% would give Starship a safety margin of 125%, enough – in the eyes of most engineering standards committees – to reasonably certify Starships for orbital test flights.”
Teslarati.com — January 12th, 2020

Test Tank 2: The Tankening
This brings us to January 27th, a little over two weeks after SpaceX completed and burst the first standalone Starship test tank. Over the last week, SpaceX has quickly assembled a second Starship test tank, using a few clearly new methods and parts, as well as a brand-new tent built by the same company that Tesla used for Fremont’s fourth General Assembly line.
In the last few days, two new bulkheads and steel rings came together to form Starship test tank #2, which was subsequently prepped for transport and moved about a mile down the road to SpaceX’s launch facilities on the morning of January 27th. Scarcely a few hours later, well before anyone was paying close attention for test activities, Elon Musk took to Twitter to reveal that the second tank had already been subjected to a pressure test with water. That second tank reportedly survived up to 7.5 bar, an improvement of about 6% compared to the first tank.
This time, however, the tank wasn’t actually catastrophically destroyed by the pressure test, instead developing a leak around the weld connecting the two halves that lead SpaceX to back off. Musk says that that presumably small leak will now be repaired, after which the same tank will be tested again but with one significant difference. Musk says that Test Tank #2’s second pressure test will be performed with a cryogenic liquid — most likely liquid nitrogen (LN2).

In replies after his reveal, Musk noted that he believed the second test tank could perform significantly better if pressurized with a cryogenic liquid. That’s because certain types of steel – particularly those SpaceX has chosen for Starship – exhibit something known as cryogenic hardening when exposed to extremely cold temperatures, producing steel that can be dramatically stronger by some measures.
Ultimately, as mentioned above, a tank pressure safety margin of 125% is the minimum most engineering standards provide for any given orbital-class launch vehicle. At 7.5 bar, even under the very unlikely assumption that Starship tanks will not see even a marginal strength increase at cryogenic temperatures, SpaceX’s second Starship test tank has officially hit that 125% safety margin. As Musk himself noted on Monday, he is now confident that SpaceX can immediately start building the first Starship destined for spaceflight and further revealed that two of that particular Starship’s three tank domes are already nearing completion.

Known as Starship SN01 (serial number 01), there’s a strong possibility that the massive spacecraft will never reach higher than a 20 km (12.5 mi) flight test SpaceX intends to perform. The company’s rapidly changing strategy may very well mean that SN01 – now ‘go’ for production – could also support suborbital spaceflight testing and maybe even the first orbital Starship launch, although orbital launches will require a Super Heavy booster. Elon Musk, for one, has already christened Starship SN01 an “orbital vehicle”.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla China’s domestic sales fell 4.8% in 2025, but it’s not doom and gloom
Despite the full-year dip, Tesla finished the year with record domestic sales in December.
Tesla posted 625,698 retail vehicle sales in China in 2025, marking a 4.8% year-on-year decline as the EV maker navigated an increasingly competitive EV market and a major production transition for its best-selling vehicle.
Despite the full-year dip, Tesla finished the year with record domestic sales in December.
Retail sales slip amid Model Y transition
Tesla’s 2025 retail sales in China were down from 657,102 units in 2024, when the company ranked third in the country’s new energy vehicle (NEV) market with a 6.0% share. In 2025, Tesla’s share slipped to 4.9%, placing it fifth overall, as noted in a CNEV Post report.
Part of the decline seemed tied to operational disruptions early in the year. Tesla implemented a changeover to the new Tesla Model Y in the first quarter of 2025, which required temporary production pauses at Giga Shanghai. That downtime reduced vehicle availability early during the year, weighing on the company’s retail volumes in China and in areas supplied by Giga Shanghai’s exports.
China remained one of Tesla’s largest markets, accounting for 38.24% of its global deliveries of 1.64 million vehicles in 2025. However, the company also saw exports from Giga Shanghai fall to 226,034 units, down nearly 13% year-on-year. It remains to be seen how much of this could be attributed to the Model Y changeover and how much could be attributed to other factors.
Strong December 2025 finish
While the full-year picture showed some contraction, Tesla closed 2025 on a high note. According to data from the China Passenger Car Association (CPCA), Tesla China delivered a record 93,843 vehicles domestically in China in December, its highest monthly total ever. That figure was up 13.2% from a year earlier and 28.3% higher than November.
The surge was driven in part by Tesla prioritizing domestic deliveries late in the year, allowing buyers to lock in favorable purchase tax policies. In December alone, Tesla captured 7.0% of China’s NEV market and a notable 12.0% share of the country’s battery-electric segment.
On a wholesale basis, Tesla China sold 851,732 vehicles in 2025, down 7.1% year-on-year. From this number, 97,171 were from December 2025 alone. Tesla Model 3 wholesale figures reached 312,738 units, a year-over-year decrease of 13.12%. The Tesla Model Y’s wholesale figures for 2025 were 538,994 units, down 3.18% year-over-year.
News
Tesla Robovan’s likely first real-world use teased by Boring Company President
As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events.
The Boring Company President Steve Davis has shared the most likely first real-world use for Tesla’s Robovan.
As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events.
Tesla Robovan for high-demand events
During a feature with the Las Vegas Review-Journal, Boring Company President Steve Davis stated that the Tesla Robovan will be used in Sin City once the Vegas Loop expands across the Strip and downtown and the fleet grows to about 1,200 Teslas.
At that scale, Robovans would primarily be deployed during predictable surges, such as game days and large shows, when many riders are traveling to the same destination at the same time.
“The second you have four (passengers) and you have to start stopping, the best thing you can do is put your smallest vehicle in, which is a car. But if you know people are going to the stadium because of a game, you’ll know an hour before, two hours before, that a lot of people are going to a game or a Sphere show, if you are smart about it, that’s when you put a high occupancy vehicle in, that’s when you put the Robovan in,” Davis said.

Vegas Loop expansion
Steve Davis’s Robovan comment comes amid The Boring Company’s efforts to expand the Vegas Loop’s airport service. Phase 1 of rides to Harry Reid International Airport began last month, allowing passengers to travel from existing Loop stations such as Resorts World, Encore, Westgate, and the Las Vegas Convention Center.
Phase 2 will add a 2.2-mile dual-direction tunnel from Westgate to Paradise Road. That section is expected to open within months and will allow speeds of up to 60 mph on parts of the route, while expanding the fleet to around 160 vehicles.
Future phases are expected to extend tunnels closer to airport terminals and add multiple stations along University Center Drive. At this point, the system’s fleet is expected to grow close to 300 Teslas. The final phase, an underground airport station, was described by Davis as the system’s “holy grail.” This, however, has no definite timeframe as of yet.
News
Tesla seeks engineer to make its iOS Robotaxi app feel “magical”
It appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.
Tesla is hiring an iOS Engineer for its Robotaxi app team, with the job posting emphasizing the creation of polished experiences that make the service not just functional, but “magical.”
Needless to say, it appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.
Robotaxi App features
As observed by Tesla community members, Tesla has gone live with a job listing for an iOS Engineer for its Robotaxi App. The job listing mentions the development of a “core mobile experience that enables customers to summon, track, and interact with a driverless vehicle. From requesting a ride to enabling frictionless entry, from trip planning to real-time vehicle status and media control.”
Interestingly enough, the job listing also mentioned the creation of polished experiences that make the Robotaxi more than just functional. “You will take full ownership of features—from architecture design to robust implementation—delivering delightful and polished experiences that make Robotaxi not just functional, but magical,” Tesla noted in its job listing.
Apple’s “magical” marketing
Tesla’s use of the word “magical” when referring to the Robotaxi app mirrors the marketing used by Apple for some of its key products. Apple typically uses the word when referring to products or solutions that transform complex technology into something that feels effortless, simple, and natural to daily life. Products such as the AirPods’ seamless pairing with the iPhone and FaceID’s complex yet simple-to-use security system have received Apple’s “magical” branding.
With this in mind, Tesla seems intent on developing a Robotaxi app that is sophisticated, but still very easy to use. Tesla already has extensive experience in this area, with the Tesla App consistently being hailed by users as one of the best in its segment. If Tesla succeeds in making the Robotaxi app worthy of its “magical” branding, then it wouldn’t be a surprise if the service sees rapid adoption even among mainstream consumers.