Connect with us

News

SpaceX’s Mr. Steven preparing for first Falcon 9 fairing catch attempt in months

SpaceX recovery vessel Mr. Steven appears to be ready for its first Falcon fairing catch attempt in more than four months. (Tom Cross)

Published

on

SpaceX recovery vessel Mr. Steven has spent the last several weeks undergoing major refits – including a new net and arms – and testing the upgraded hardware in anticipation of the vessel’s first fairing catch attempt in more than four months.

Required after a mysterious anomaly saw Mr. Steven return to Port in February sans two arms and a net, the appearance of a new net and arms guarantees that SpaceX is still pursuing its current method of fairing recovery. Above all else, successfully closing the loop and catching fairings could help SpaceX dramatically ramp its launch cadence and lower costs, especially critical for the affordable launch of the company’s own Starlink satellite constellation.

The Saga of Steven

For a few months of 2019, it was entirely conceivable that SpaceX had all but given up on catching Falcon fairings, having spent the better part of 2018 without a single success during both post-launch and experimentally controlled catch attempts. Admittedly, a year may feel like a huge amount of time, but SpaceX has demonstrated just how hard the reliably successful recovery of orbital-class rocket hardware really is.

Depending on how one examines the history of Falcon 9, it took SpaceX anywhere from ~30 and ~70 months and either 7 or 9 failed recovery attempts before the first Falcon 9 booster successfully landed in December 2015. Excluding helicopter-based fairing drop tests, Mr. Steven and SpaceX’s fairing recovery team have made five attempts to catch fairings in the vessel’s net after Falcon 9 launches. All have been unsuccessful, with the closest miss reportedly landing in the Pacific Ocean just 50 meters away from Mr. Steven’s massive net.

In January 2019, Mr. Steven sailed ~8000 km (5000 mi) from Port of Los Angeles to Port Canaveral, passing through the Panama Canal. For unknown reasons, during a trip out to sea to catch a Falcon 9 fairing in February, Mr. Steven abruptly turned around early and arrived in port missing two of four arms, four of eight booms, and the entirety of its custom net. The remaining arms/booms were removed and the vessel spent roughly three months docked with just a handful of excursions.

https://twitter.com/TomCross/status/1114047279701184512

In late May, technicians rapidly installed new arms and booms, as well as a new (and blue) net, bringing about the end of months of inactivity. Mr. Steven has yet to venture beyond the safety of Port Canaveral since its new ‘catcher’s mitt’ was installed, but SpaceX has been testing the new setup by repeatedly lowering a Falcon fairing half into the net. It’s too early to raise expectations but it seems plausible that the iconic recovery vessel will be ready to attempt its first fairing catch in ~4 months as part of Falcon Heavy’s next scheduled launch, currently NET June 22.

https://twitter.com/_TomCross_/status/1136045022275657728

A challenger approaches…

Although Mr. Steven’s prospects look better than they have in months, SpaceX’s fairing recovery engineers and technicians have not been sitting on their hands. Begun as a check against the growing possibility that reliably catching fairings in a (relatively) small net is just too difficult to be worth it, SpaceX has been analyzing methods of reusing fairings without Mr. Steven. Most notably, despite the failure to catch fairings out of the air, the fairing halves themselves – relying on GPS-guided parafoils – have proven to be capable of reliably performing gentle landings on the ocean surface.

This consistently leaves the fairings intact and floating on the ocean but at the cost of partial saltwater immersion and exposure to surface-level sea spray and waves. At least in today’s era of highly complex large satellites, customers typically demand that payload fairings (like Falcon 9’s) offer a clean room-quality environment once the satellite is encapsulated inside. Sea water is full of salt, organic molecules, and water, all three of which do not get along well with extremely sensitive electronics. The whole purpose of recovering and reusing fairings is to make their reuse more efficient and less expensive than simply building a new fairing. The task of cleaning composite structures to clean room-standards after salt water exposure and immersion tends to be less than friendly to both aspirations.

Advertisement
-->

According to SpaceX CEO Elon Musk, however, that challenge may be distinctly solvable and could even be easier than the Mr. Steven approach. After Falcon Heavy’s commercial Arabsat 6A launch debut in April 2019, Musk again confirmed that SpaceX would be ready to test that alternate method of fairing reuse very soon and plans to do so on an “internal” (i.e. Starlink) launch later this year. As noted below, this is helped by the fact that SpaceX’s internally-developed Starlink satellites apparently have no need for the acoustic insulation panels that normally protect sensitive spacecraft from the brutal acoustic environment produced by rockets while still in Earth’s atmosphere.

For fairing reusability, the lack of those panels is just one less thing to have to worry about cleaning or replacing. Intriguingly, it’s easy to imagine that – much like SpaceX has apparently designed Starlink satellites to be resistant to intense acoustic environments – the company could have also required that they be tough enough to tolerate a less-than-pristine fairing environment. With that approach, SpaceX could continue to build new fairings for every customer launch, entirely amortizing their production cost before transferring the ‘dirty’, flight-proven fairings to internal Starlink launches.

In essence, SpaceX’s customers would quite literally be paying the company to build the very Falcon 9 boosters and fairings it will ultimately use to launch its massive Starlink constellation, requiring hundreds of launches over the next decade. The faster and more efficiently SpaceX can build and launch Starlink, the faster it can develop Starship/Super Heavy and entirely transcend any concerns of salty fairings (let alone expendable upper stages). But in the meantime, Mr. Steven will return to his catching duties and SpaceX will continue to attempt to reuse payload fairings.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading