Connect with us

News

SpaceX’s Mr. Steven preparing for first Falcon 9 fairing catch attempt in months

SpaceX recovery vessel Mr. Steven appears to be ready for its first Falcon fairing catch attempt in more than four months. (Tom Cross)

Published

on

SpaceX recovery vessel Mr. Steven has spent the last several weeks undergoing major refits – including a new net and arms – and testing the upgraded hardware in anticipation of the vessel’s first fairing catch attempt in more than four months.

Required after a mysterious anomaly saw Mr. Steven return to Port in February sans two arms and a net, the appearance of a new net and arms guarantees that SpaceX is still pursuing its current method of fairing recovery. Above all else, successfully closing the loop and catching fairings could help SpaceX dramatically ramp its launch cadence and lower costs, especially critical for the affordable launch of the company’s own Starlink satellite constellation.

The Saga of Steven

For a few months of 2019, it was entirely conceivable that SpaceX had all but given up on catching Falcon fairings, having spent the better part of 2018 without a single success during both post-launch and experimentally controlled catch attempts. Admittedly, a year may feel like a huge amount of time, but SpaceX has demonstrated just how hard the reliably successful recovery of orbital-class rocket hardware really is.

Depending on how one examines the history of Falcon 9, it took SpaceX anywhere from ~30 and ~70 months and either 7 or 9 failed recovery attempts before the first Falcon 9 booster successfully landed in December 2015. Excluding helicopter-based fairing drop tests, Mr. Steven and SpaceX’s fairing recovery team have made five attempts to catch fairings in the vessel’s net after Falcon 9 launches. All have been unsuccessful, with the closest miss reportedly landing in the Pacific Ocean just 50 meters away from Mr. Steven’s massive net.

In January 2019, Mr. Steven sailed ~8000 km (5000 mi) from Port of Los Angeles to Port Canaveral, passing through the Panama Canal. For unknown reasons, during a trip out to sea to catch a Falcon 9 fairing in February, Mr. Steven abruptly turned around early and arrived in port missing two of four arms, four of eight booms, and the entirety of its custom net. The remaining arms/booms were removed and the vessel spent roughly three months docked with just a handful of excursions.

https://twitter.com/TomCross/status/1114047279701184512

In late May, technicians rapidly installed new arms and booms, as well as a new (and blue) net, bringing about the end of months of inactivity. Mr. Steven has yet to venture beyond the safety of Port Canaveral since its new ‘catcher’s mitt’ was installed, but SpaceX has been testing the new setup by repeatedly lowering a Falcon fairing half into the net. It’s too early to raise expectations but it seems plausible that the iconic recovery vessel will be ready to attempt its first fairing catch in ~4 months as part of Falcon Heavy’s next scheduled launch, currently NET June 22.

https://twitter.com/_TomCross_/status/1136045022275657728

A challenger approaches…

Although Mr. Steven’s prospects look better than they have in months, SpaceX’s fairing recovery engineers and technicians have not been sitting on their hands. Begun as a check against the growing possibility that reliably catching fairings in a (relatively) small net is just too difficult to be worth it, SpaceX has been analyzing methods of reusing fairings without Mr. Steven. Most notably, despite the failure to catch fairings out of the air, the fairing halves themselves – relying on GPS-guided parafoils – have proven to be capable of reliably performing gentle landings on the ocean surface.

This consistently leaves the fairings intact and floating on the ocean but at the cost of partial saltwater immersion and exposure to surface-level sea spray and waves. At least in today’s era of highly complex large satellites, customers typically demand that payload fairings (like Falcon 9’s) offer a clean room-quality environment once the satellite is encapsulated inside. Sea water is full of salt, organic molecules, and water, all three of which do not get along well with extremely sensitive electronics. The whole purpose of recovering and reusing fairings is to make their reuse more efficient and less expensive than simply building a new fairing. The task of cleaning composite structures to clean room-standards after salt water exposure and immersion tends to be less than friendly to both aspirations.

Advertisement
-->

According to SpaceX CEO Elon Musk, however, that challenge may be distinctly solvable and could even be easier than the Mr. Steven approach. After Falcon Heavy’s commercial Arabsat 6A launch debut in April 2019, Musk again confirmed that SpaceX would be ready to test that alternate method of fairing reuse very soon and plans to do so on an “internal” (i.e. Starlink) launch later this year. As noted below, this is helped by the fact that SpaceX’s internally-developed Starlink satellites apparently have no need for the acoustic insulation panels that normally protect sensitive spacecraft from the brutal acoustic environment produced by rockets while still in Earth’s atmosphere.

For fairing reusability, the lack of those panels is just one less thing to have to worry about cleaning or replacing. Intriguingly, it’s easy to imagine that – much like SpaceX has apparently designed Starlink satellites to be resistant to intense acoustic environments – the company could have also required that they be tough enough to tolerate a less-than-pristine fairing environment. With that approach, SpaceX could continue to build new fairings for every customer launch, entirely amortizing their production cost before transferring the ‘dirty’, flight-proven fairings to internal Starlink launches.

In essence, SpaceX’s customers would quite literally be paying the company to build the very Falcon 9 boosters and fairings it will ultimately use to launch its massive Starlink constellation, requiring hundreds of launches over the next decade. The faster and more efficiently SpaceX can build and launch Starlink, the faster it can develop Starship/Super Heavy and entirely transcend any concerns of salty fairings (let alone expendable upper stages). But in the meantime, Mr. Steven will return to his catching duties and SpaceX will continue to attempt to reuse payload fairings.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink achieves major milestones in 2025 progress report

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.

Published

on

Credit: Starlink/X

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.

SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.

Key achievements from Starlink’s 2025 Progress

Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.

Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.

Starlink Direct to Cell

Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.

Advertisement
-->

This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.

starlinkProgressReport_2025 by Simon Alvarez

Continue Reading

News

Tesla Giga Nevada celebrates production of 6 millionth drive unit

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

Published

on

Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

6 million drive units

The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote. 

The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.

Giga Nevada’s essential role

Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.

Advertisement
-->

Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.

Continue Reading

News

Tesla Supercharger network delivers record 6.7 TWh in 2025

The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.

Published

on

tesla-diner-supercharger
Credit: Tesla

Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide. 

To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.

Record 6.7 TWh delivered in 2025

The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream. 

Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.

This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.

Advertisement
-->

Resilience after Supercharger team changes

2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”

Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.

Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible. 

Continue Reading