News
SpaceX rocket catch simulation raises more questions about concept
CEO Elon Musk has published the first official visualization of what SpaceX’s plans to catch Super Heavy boosters might look like in real life. However, the simulation he shared raises just as many questions as it answers.
Since at least late 2020, SpaceX CEO Elon Musk has been floating the idea of catching Starships and Super Heavy boosters out of the sky as an alternative to having the several-dozen-ton steel rockets use basic legs to land on the ground. This would be a major departure from SpaceX’s highly successful Falcon family, which land on a relatively complex set of deployable legs that can be retracted after most landings. The flexible, lightweight structures have mostly been reliable and easily reusable but Falcon boosters occasionally have rough landings, which can use up disposable shock absorbers or even damage the legs and make boosters hard to safely recover and slower to reuse.
As a smaller rocket, Falcon boosters have to be extremely lightweight to ensure healthy payload margins and likely weigh about 25-30 tons empty and 450 tons fully fueled – an excellent mass ratio for a reusable rocket. While it’s still good to continue that practice of rigorous mass optimization with Starship, the vehicle is an entirely different story. Once plans to stretch the Starship upper stage’s tanks and add three more Raptors are realized, it’s quite possible that Starship will be capable of launching more than 200 tons (~440,000 lb) of payload to low Earth orbit (LEO) with ship and booster recovery.
One might think that SpaceX, with the most capable rocket ever built potentially on its hands, would want to take advantage of that unprecedented performance to make the rocket itself – also likely to be one of the most complex launch vehicles ever – simpler and more reliable early on in the development process. Generally speaking, that would involve sacrificing some of its payload capability and adding systems that are heavier but simpler and more robust. Once Starship is regularly flying to orbit and gathering extensive flight experience and data, SpaceX might then be able refine the rocket, gradually reducing its mass and improving payload to orbit by optimizing or fully replacing suboptimal systems and designs.
Instead, SpaceX appears to be trying to substantially optimize Starship before it’s attempted a single orbital launch. The biggest example is Elon Musk’s plan to catch Super Heavy boosters – and maybe Starships, too – for the sole purpose of, in his own words, “[saving] landing leg mass [and enabling] immediate reflight of [a giant, unwieldy rocket].” Musk, SpaceX executives, or both appear to be attempting to refine a rocket that has never flown. Further, based on a simulation of a Super Heavy “catch” Musk shared on January 20th, all that oddly timed effort may end up producing a solution that’s actually worse than what it’s trying to replace.
Based on the simulated telemetry shown in the visualization, Super Heavy’s descent to the landing zone appears to be considerably gentler than the ‘suicide burn’ SpaceX routinely uses on Falcon. By decelerating as quickly as possible and making landing burns as short as possible, Falcon saves a considerable amount of propellant during recovery – extra propellant that, if otherwise required, would effectively increase Falcon’s dry mass and decrease its payload to orbit. In the Super Heavy “catch” Musk shared, the booster actually appears to be landing – just on an incredibly small patch of steel on the tower’s ‘Mechazilla’ arms instead of a concrete pad on the ground.
Aside from a tiny bit of lateral motion, the arms appear motionless during the ‘catch,’ making it more of a landing. Further, Super Heavy is shown decelerating rather slowly throughout the simulation and appears to hover for almost 10 seconds near the end. That slow, cautious descent and even slower touchdown may be necessary because of how incredibly accurate Super Heavy has to be to land on a pair of hardpoints with inches of lateral margin for error and maybe a few square feet of usable surface area. The challenge is a bit like if SpaceX, for some reason, made Falcon boosters land on two elevated ledges about as wide as car tires. Aside from demanding accurate rotational control, even the slightest lateral deviation would cause the booster to topple off the pillars and – in the case of Super Heavy – fall about a hundred feet onto concrete, where it would obviously explode.
What that slow descent and final hover mean is that the Super Heavy landing shown would likely cost significantly more delta V (propellant) than a Falcon-style suicide burn. Propellant has mass, so Super Heavy would likely need to burn at least 5-10 tons more to carefully land on arms that aren’t actively matching the booster’s position and velocity. Ironically, SpaceX could probably quite easily add rudimentary, fixed legs – removing most of the bad aspects of Falcon legs – to Super Heavy with a mass budget of 10 tons. But even if SpaceX were to make those legs as simple, dumb, and reliable as physically possible and they wound up weighing 20 tons total, the inherent physics of rocketry mean that adding 20 tons to Super Heavy’s likely 200-ton dry mass would only reduce the rocket’s payload to orbit by about 3-5 tons or 1-3%.
Further, per Musk’s argument that landing on the arms would enhance the speed of reuse, it’s difficult to see how landing Super Heavy or Starship in the exact same corridor – but on the ground instead of on the arms – would change anything. If Super Heavy is accurate enough to land on a few square meters of steel, it must inherently be accurate enough to land within the far larger breadth of those arms. The only process landing on the arms would clearly remove is reattaching the arms to a landed booster or ship, which it’s impossible to imagine would save more than a handful of minutes or maybe an hour of work. SpaceX’s Falcon booster turnaround record is currently 27 days, so it’s even harder to imagine why SpaceX would be worrying about cutting minutes or a few hours off of the turnaround and reuse of a rocket that has never even performed a full static fire test – let alone attempted an orbital-class launch, reentry, or landing.
Put simply, while Starbase’s launch tower arms will undoubtedly be useful for quickly lifting and stacking Super Heavy and Starship, it’s looking more and more likely that using those arms as a landing platform will, at best, be an inferior alternative to basic Falcon-style landings. More importantly, even if everything works perfectly, the arms actually cooperate with boosters to catch them, and it’s possible for Super Heavy to avoid hovering and use a more efficient suicide burn, the apparent best-case outcome of all that effort is marginally faster reuse and perhaps a 5% increase in payload to orbit. Only time will tell if such a radical change proves to be worth such marginal benefits.
News
Tesla is making a change to its exterior cameras with a potential upgrade
Tesla appears to be making a change to its exterior side repeater cameras, which are used for the company’s Full Self-Driving suite, and other features, like Sentry Mode.
The change appears to be a potential upgrade in preparation for the AI5 suite, which CEO Elon Musk said will be present on a handful of vehicles next year, but will not be widely implemented until 2027.
Currently, Tesla uses a Sony sensor lens with the model number IMX963, a 5-megapixel camera with better dynamic range and low-light performance over the past iteration in Hardware 3 vehicles. Cameras in HW3 cars were only 1.2 megapixels.
However, Tesla is looking to upgrade, it appears, as Tesla hacker greentheonly has spotted a new sensor model in its firmware code, with the model number IMX00N being explicitly mentioned:
Looks like Tesla is changing (upgrading?) cameras in (some?) new cars produced.
Where as HW4 to date used exterior cameras with IMX963, now they (might potentially) have something called IMX00N— green (@greentheonly) December 1, 2025
Sony has not announced any formal specifications for the IMX00N model, and although IMX963 has been used in AI4/HW4 vehicles, it only makes sense that Tesla would prepare to upgrade these external cameras once again in preparation for what it believes to be the second hardware iteration capable of fully autonomous self-driving.
Tesla has maintained that AI4/HW4 vehicles are capable of self-driving operation, but AI5 will likely help the company make significant strides, especially in terms of overall performance and data collection.
Tesla last updated its exterior cameras on its vehicles back in early 2023, as it transitioned to the 5-megapixel IMX963. It also added additional cameras to its vehicles in January with the new Model Y, which featured an additional lens on the front bumper to help with Full Self-Driving.
Tesla’s new self-driving computer (HW4): more cameras, radar, and more
News
Tesla Model Y Standard Full Review: Is it worth the lower price?
Tesla launched the Model Y Standard as an attempt to offer affordable electric vehicles to consumers now that the $7,500 EV tax credit is gone. We were able to spend four days with the car, and it was more than enough time to determine whether or not the car was worth the $9,000 discount compared to the Premium All-Wheel-Drive configuration, which is what I drive daily.
The Model Y Standard was stripped of some of the features that are present in the Premium trims of the Model Y: no glass roof, a sound system with roughly half the speakers, fewer acoustic-lined glass windows, less storage, and less functionality from an interior standpoint.
However, there are some real advantages to purchasing a Standard Model Y, and there are a handful of situations where this car would be well-suited.
Do I think it is worth the lower price? Well, I’ll get to that later in this article.
Initial Thoughts
In my first impressions review of the Model Y Standard, I talked about the face-value differences between my Model Y Premium and the new, more affordable trim. You will first notice the lack of storage between the front two seats, as the cupholder and additional storage bin sliding doors are void. You still get the cupholders, but they are exposed, which isn’t a huge deal, but it definitely takes away from the sleek look the Premium trim offers.
Additionally, the textile seats replace those of the vegan leather that is available in the upper-level trims. I mentioned previously that I could take or leave the vegan leather for the textile seats, as they are easy to clean, quick drying, and hide oils from your skin much better than leather does.

However, there comes one big sacrifice that I have been spoiled by, as the textile seats are not ventilated, so say goodbye to cooling your keister in the Summertime.
The lack of a glass roof is something many owners might not even notice. However, I have been spoiled by the glass roof in my car, and I look out of it every time I’m in my car. It is one of my favorite features, without a doubt. While it would not be a dealbreaker for me, it would be something I would miss terribly.
Things I Noticed After Several Days
Cabin Noise
One of the biggest things I noticed after the first two days in the Model Y Standard is that the cabin is much louder than the Premium. This is because Tesla did not acoustically line all of the glass in the Standard configuration, as it did in the Premium. The side windows are not treated, just the windshields. Therefore, you notice the noise level in the cabin is louder than in the Premium.
If you had not been driving in a Premium trim for a few months, you might not notice it. However, it is something that is a big sacrifice when moving to a different trim level, especially one that is less premium than what you might currently drive.

I have always been so shocked at how amazingly quiet the Premium trim’s cabin is; my Model Y is extremely peaceful, even when I’m sitting in bumper-to-bumper traffic, and people have modified mufflers and exhaust systems, tractor-trailers are going by, or crotchrockets are zipping by on the interstate.
This is a huge difference between the two cars, and it is something that is really hard to get used to. I know, first-world problems, right? But when you’re paying between $39,990 and $48,990 for a car, those little things truly do matter.
Stereo System Differences
Another thing I was very aware of was how weak the sound system is. I think if I had bought a Standard Model Y, I would have looked at having the speakers and subwoofers upgraded; I was almost disappointed in how much of a change it was between the two cars.
When I finally picked up my Model Y Premium on Friday (which had been detailed by the awesome team at Tesla Mechanicsburg), the first thing I did was crank up the volume and listen to some music. I really missed having a premium sound system.
Ride Quality
There are virtually no differences between the two cars in terms of ride quality. They are both extremely fun to drive, and the suspension in the Model Y Standard feels perhaps a little bit stiffer than the Premium. Regardless, I didn’t truly notice all that much of a change.
Driving this car around windy roads and tight turns was just as fun as my Model Y Premium. It was a blast to test out, and the slight change in feel was welcome. It’s always fun to drive new cars.
Performance
This is the first EV I’ve ever ridden in where I did not feel that awesome sensation of instant torque. It’s still a quick car, but it is missing that pep in its step that many of us have become accustomed to.
If you want to get someone’s true reaction to EV acceleration, let me just put it this way: This is not the car to do it in.
Some Little-Known Facts About the Model Y Standard
Most of us know that the Model Y Standard has a glass roof, but it is opaque, so even if you took out the headliner, you still would not see out of it. However, there is an interesting little tidbit from a Service perspective that does not make much sense.
If the Model Y glass roof cracks or is broken and needs to be replaced, Service is required to pull off the entire headliner and topside interior to access the glass. It cannot be replaced from the outside. In the Premium, because the glass is exposed, it is a much simpler process to replace the glass. This was an interesting thing I learned.
Additionally, the seat controls are only available on the center screen, which makes it difficult to adjust the seat if you are larger than the person who sat in the car previously. In order to adjust the seat, you’ll have to lean over the chair, access the controls from the screen, and adjust it manually before getting in.
Is the Tesla Model Y Standard Worth the Cheaper Price?
For an additional $9,000 to buy the Model Y Premium AWD, you would get a more capable powertrain, a quieter cabin, better performance, an upgraded interior, more storage, a better sound system, and more luxury features.
To me, the Standard is a car that seems extremely ideal for a teenager’s first vehicle (I got a $1,500 1998 VW Jetta K2 with 200,000 miles when I was 16), or a fleet vehicle. This would be the perfect car for salespeople to use: it does not have all the bells and whistles, it is efficient, and it is just what is needed to drive around to meetings.
For a personal car, it really depends on what you think you need. Admittedly, I’ve been spoiled by the Premium configuration, and personally, I wouldn’t go down to the Standard after owning a Premium trim.
News
Tesla’s new Holiday perk is timed perfectly to make FSD a household name
Tesla AI4 owners get FSD (Supervised) through Christmas, New Year’s Eve and well into the post-holiday travel season.
Tesla quietly rolled out a free Full Self-Driving (Supervised) trial for roughly 1.5 million HW4 owners in North America who never bought the package, and the timing could very well be genius.
As it turns out, the trial doesn’t end after 30 days. Instead, it expires January 8, 2026, meaning owners get FSD (Supervised) through Christmas, New Year’s Eve and well into the post-holiday travel season. This extended window positions the feature for maximum word-of-mouth exposure.
A clever holiday gift
Tesla watcher Sawyer Merritt first spotted the detail after multiple owners shared screenshots showing the trial expiring on January 8. He confirmed with affected users that none had active FSD subscriptions before the rollout. He also observed that Tesla never called the promotion a “30-day trial,” as the in-car message simply reads “You’re Getting FSD (Supervised) For the Holidays,” which technically runs until after the new year.
The roughly 40-day period covers peak family travel and gatherings, giving owners ample opportunity to showcase the latest FSD V14’s capabilities on highway trips, crowded parking lots and neighborhood drives. With relatives riding along, hands-off highway driving and automatic lane changes could become instant conversation starters.
Rave reviews for FSD V14 highlight demo potential
FSD has been receiving positive reviews from users as of late. Following the release of FSD v14.2.1, numerous owners praised the update for its smoothness and reliability. Tesla owner @LactoseLunatic called it a “huge leap forward from version 14.1.4,” praising extreme smoothness, snappy lane changes and assertive yet safe behavior that allows relaxed monitoring.
Another Tesla owner, @DevinOlsenn, drove 600 km without disengagements, noting his wife now defaults to FSD for daily use due to its refined feel. Sawyer Merritt also tested FSD V14.2.1 in snow on unplowed New Hampshire roads, and the system stayed extra cautious without hesitation. Longtime FSD tester Chuck Cook highlighted improved sign recognition in school zones, showing better dynamic awareness. These reports of fewer interventions and a more “sentient” drive could turn family passengers into advocates, fueling subscriptions come January.
