News
SpaceX rocket catch simulation raises more questions about concept
CEO Elon Musk has published the first official visualization of what SpaceX’s plans to catch Super Heavy boosters might look like in real life. However, the simulation he shared raises just as many questions as it answers.
Since at least late 2020, SpaceX CEO Elon Musk has been floating the idea of catching Starships and Super Heavy boosters out of the sky as an alternative to having the several-dozen-ton steel rockets use basic legs to land on the ground. This would be a major departure from SpaceX’s highly successful Falcon family, which land on a relatively complex set of deployable legs that can be retracted after most landings. The flexible, lightweight structures have mostly been reliable and easily reusable but Falcon boosters occasionally have rough landings, which can use up disposable shock absorbers or even damage the legs and make boosters hard to safely recover and slower to reuse.
As a smaller rocket, Falcon boosters have to be extremely lightweight to ensure healthy payload margins and likely weigh about 25-30 tons empty and 450 tons fully fueled – an excellent mass ratio for a reusable rocket. While it’s still good to continue that practice of rigorous mass optimization with Starship, the vehicle is an entirely different story. Once plans to stretch the Starship upper stage’s tanks and add three more Raptors are realized, it’s quite possible that Starship will be capable of launching more than 200 tons (~440,000 lb) of payload to low Earth orbit (LEO) with ship and booster recovery.
One might think that SpaceX, with the most capable rocket ever built potentially on its hands, would want to take advantage of that unprecedented performance to make the rocket itself – also likely to be one of the most complex launch vehicles ever – simpler and more reliable early on in the development process. Generally speaking, that would involve sacrificing some of its payload capability and adding systems that are heavier but simpler and more robust. Once Starship is regularly flying to orbit and gathering extensive flight experience and data, SpaceX might then be able refine the rocket, gradually reducing its mass and improving payload to orbit by optimizing or fully replacing suboptimal systems and designs.
Instead, SpaceX appears to be trying to substantially optimize Starship before it’s attempted a single orbital launch. The biggest example is Elon Musk’s plan to catch Super Heavy boosters – and maybe Starships, too – for the sole purpose of, in his own words, “[saving] landing leg mass [and enabling] immediate reflight of [a giant, unwieldy rocket].” Musk, SpaceX executives, or both appear to be attempting to refine a rocket that has never flown. Further, based on a simulation of a Super Heavy “catch” Musk shared on January 20th, all that oddly timed effort may end up producing a solution that’s actually worse than what it’s trying to replace.
Based on the simulated telemetry shown in the visualization, Super Heavy’s descent to the landing zone appears to be considerably gentler than the ‘suicide burn’ SpaceX routinely uses on Falcon. By decelerating as quickly as possible and making landing burns as short as possible, Falcon saves a considerable amount of propellant during recovery – extra propellant that, if otherwise required, would effectively increase Falcon’s dry mass and decrease its payload to orbit. In the Super Heavy “catch” Musk shared, the booster actually appears to be landing – just on an incredibly small patch of steel on the tower’s ‘Mechazilla’ arms instead of a concrete pad on the ground.
Aside from a tiny bit of lateral motion, the arms appear motionless during the ‘catch,’ making it more of a landing. Further, Super Heavy is shown decelerating rather slowly throughout the simulation and appears to hover for almost 10 seconds near the end. That slow, cautious descent and even slower touchdown may be necessary because of how incredibly accurate Super Heavy has to be to land on a pair of hardpoints with inches of lateral margin for error and maybe a few square feet of usable surface area. The challenge is a bit like if SpaceX, for some reason, made Falcon boosters land on two elevated ledges about as wide as car tires. Aside from demanding accurate rotational control, even the slightest lateral deviation would cause the booster to topple off the pillars and – in the case of Super Heavy – fall about a hundred feet onto concrete, where it would obviously explode.
What that slow descent and final hover mean is that the Super Heavy landing shown would likely cost significantly more delta V (propellant) than a Falcon-style suicide burn. Propellant has mass, so Super Heavy would likely need to burn at least 5-10 tons more to carefully land on arms that aren’t actively matching the booster’s position and velocity. Ironically, SpaceX could probably quite easily add rudimentary, fixed legs – removing most of the bad aspects of Falcon legs – to Super Heavy with a mass budget of 10 tons. But even if SpaceX were to make those legs as simple, dumb, and reliable as physically possible and they wound up weighing 20 tons total, the inherent physics of rocketry mean that adding 20 tons to Super Heavy’s likely 200-ton dry mass would only reduce the rocket’s payload to orbit by about 3-5 tons or 1-3%.
Further, per Musk’s argument that landing on the arms would enhance the speed of reuse, it’s difficult to see how landing Super Heavy or Starship in the exact same corridor – but on the ground instead of on the arms – would change anything. If Super Heavy is accurate enough to land on a few square meters of steel, it must inherently be accurate enough to land within the far larger breadth of those arms. The only process landing on the arms would clearly remove is reattaching the arms to a landed booster or ship, which it’s impossible to imagine would save more than a handful of minutes or maybe an hour of work. SpaceX’s Falcon booster turnaround record is currently 27 days, so it’s even harder to imagine why SpaceX would be worrying about cutting minutes or a few hours off of the turnaround and reuse of a rocket that has never even performed a full static fire test – let alone attempted an orbital-class launch, reentry, or landing.
Put simply, while Starbase’s launch tower arms will undoubtedly be useful for quickly lifting and stacking Super Heavy and Starship, it’s looking more and more likely that using those arms as a landing platform will, at best, be an inferior alternative to basic Falcon-style landings. More importantly, even if everything works perfectly, the arms actually cooperate with boosters to catch them, and it’s possible for Super Heavy to avoid hovering and use a more efficient suicide burn, the apparent best-case outcome of all that effort is marginally faster reuse and perhaps a 5% increase in payload to orbit. Only time will tell if such a radical change proves to be worth such marginal benefits.
News
Tesla arsonist who burned Cybertruck sees end of FAFO journey
The man has now reached the “Find Out” stage.
A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated.
The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.
A five-year sentence
U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.
As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.
Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members.
The “Finding Out” stage
U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable.
“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”
Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible.
“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.