Connect with us

News

SpaceX rocket catch simulation raises more questions about concept

Published

on

CEO Elon Musk has published the first official visualization of what SpaceX’s plans to catch Super Heavy boosters might look like in real life. However, the simulation he shared raises just as many questions as it answers.

Since at least late 2020, SpaceX CEO Elon Musk has been floating the idea of catching Starships and Super Heavy boosters out of the sky as an alternative to having the several-dozen-ton steel rockets use basic legs to land on the ground. This would be a major departure from SpaceX’s highly successful Falcon family, which land on a relatively complex set of deployable legs that can be retracted after most landings. The flexible, lightweight structures have mostly been reliable and easily reusable but Falcon boosters occasionally have rough landings, which can use up disposable shock absorbers or even damage the legs and make boosters hard to safely recover and slower to reuse.

As a smaller rocket, Falcon boosters have to be extremely lightweight to ensure healthy payload margins and likely weigh about 25-30 tons empty and 450 tons fully fueled – an excellent mass ratio for a reusable rocket. While it’s still good to continue that practice of rigorous mass optimization with Starship, the vehicle is an entirely different story. Once plans to stretch the Starship upper stage’s tanks and add three more Raptors are realized, it’s quite possible that Starship will be capable of launching more than 200 tons (~440,000 lb) of payload to low Earth orbit (LEO) with ship and booster recovery.

One might think that SpaceX, with the most capable rocket ever built potentially on its hands, would want to take advantage of that unprecedented performance to make the rocket itself – also likely to be one of the most complex launch vehicles ever – simpler and more reliable early on in the development process. Generally speaking, that would involve sacrificing some of its payload capability and adding systems that are heavier but simpler and more robust. Once Starship is regularly flying to orbit and gathering extensive flight experience and data, SpaceX might then be able refine the rocket, gradually reducing its mass and improving payload to orbit by optimizing or fully replacing suboptimal systems and designs.

Instead, SpaceX appears to be trying to substantially optimize Starship before it’s attempted a single orbital launch. The biggest example is Elon Musk’s plan to catch Super Heavy boosters – and maybe Starships, too – for the sole purpose of, in his own words, “[saving] landing leg mass [and enabling] immediate reflight of [a giant, unwieldy rocket].” Musk, SpaceX executives, or both appear to be attempting to refine a rocket that has never flown. Further, based on a simulation of a Super Heavy “catch” Musk shared on January 20th, all that oddly timed effort may end up producing a solution that’s actually worse than what it’s trying to replace.

Advertisement
-->

Based on the simulated telemetry shown in the visualization, Super Heavy’s descent to the landing zone appears to be considerably gentler than the ‘suicide burn’ SpaceX routinely uses on Falcon. By decelerating as quickly as possible and making landing burns as short as possible, Falcon saves a considerable amount of propellant during recovery – extra propellant that, if otherwise required, would effectively increase Falcon’s dry mass and decrease its payload to orbit. In the Super Heavy “catch” Musk shared, the booster actually appears to be landing – just on an incredibly small patch of steel on the tower’s ‘Mechazilla’ arms instead of a concrete pad on the ground.

Aside from a tiny bit of lateral motion, the arms appear motionless during the ‘catch,’ making it more of a landing. Further, Super Heavy is shown decelerating rather slowly throughout the simulation and appears to hover for almost 10 seconds near the end. That slow, cautious descent and even slower touchdown may be necessary because of how incredibly accurate Super Heavy has to be to land on a pair of hardpoints with inches of lateral margin for error and maybe a few square feet of usable surface area. The challenge is a bit like if SpaceX, for some reason, made Falcon boosters land on two elevated ledges about as wide as car tires. Aside from demanding accurate rotational control, even the slightest lateral deviation would cause the booster to topple off the pillars and – in the case of Super Heavy – fall about a hundred feet onto concrete, where it would obviously explode.

What that slow descent and final hover mean is that the Super Heavy landing shown would likely cost significantly more delta V (propellant) than a Falcon-style suicide burn. Propellant has mass, so Super Heavy would likely need to burn at least 5-10 tons more to carefully land on arms that aren’t actively matching the booster’s position and velocity. Ironically, SpaceX could probably quite easily add rudimentary, fixed legs – removing most of the bad aspects of Falcon legs – to Super Heavy with a mass budget of 10 tons. But even if SpaceX were to make those legs as simple, dumb, and reliable as physically possible and they wound up weighing 20 tons total, the inherent physics of rocketry mean that adding 20 tons to Super Heavy’s likely 200-ton dry mass would only reduce the rocket’s payload to orbit by about 3-5 tons or 1-3%.

Further, per Musk’s argument that landing on the arms would enhance the speed of reuse, it’s difficult to see how landing Super Heavy or Starship in the exact same corridor – but on the ground instead of on the arms – would change anything. If Super Heavy is accurate enough to land on a few square meters of steel, it must inherently be accurate enough to land within the far larger breadth of those arms. The only process landing on the arms would clearly remove is reattaching the arms to a landed booster or ship, which it’s impossible to imagine would save more than a handful of minutes or maybe an hour of work. SpaceX’s Falcon booster turnaround record is currently 27 days, so it’s even harder to imagine why SpaceX would be worrying about cutting minutes or a few hours off of the turnaround and reuse of a rocket that has never even performed a full static fire test – let alone attempted an orbital-class launch, reentry, or landing.

Put simply, while Starbase’s launch tower arms will undoubtedly be useful for quickly lifting and stacking Super Heavy and Starship, it’s looking more and more likely that using those arms as a landing platform will, at best, be an inferior alternative to basic Falcon-style landings. More importantly, even if everything works perfectly, the arms actually cooperate with boosters to catch them, and it’s possible for Super Heavy to avoid hovering and use a more efficient suicide burn, the apparent best-case outcome of all that effort is marginally faster reuse and perhaps a 5% increase in payload to orbit. Only time will tell if such a radical change proves to be worth such marginal benefits.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Semi program Director teases major improvements

Published

on

Credit: Tesla

Tesla Semi Program Director Dan Priestly teased the major improvements to the all-electric Class 8 truck on Thursday night, following the company’s decision to overhaul the design earlier this year.

Priestley said he drove the Semi on Thursday, and the improvements appear to be welcomed by one of the minds behind the project. “Our customers are going to love it,” he concluded.

The small detail does not seem like much, but it is coming from someone who has been involved in the development of the truck from A to Z. Priestley has been involved in the Semi program since November 2015 and has slowly worked his way through the ranks, and currently stands as the Director of the program.

Tesla Semi undergoes major redesign as dedicated factory preps for deliveries

Tesla made some major changes to the Semi design as it announced at the 2025 Annual Shareholder Meeting that it changed the look and design to welcome improvements in efficiency.

Initially, Tesla adopted the blade-like light bar for the Semi, similar to the one that is present on the Model Y Premium and the Cybertruck.

Additionally, there are some slight aesthetic changes to help with efficiency, including a redesigned bumper with improved aero channels, a smaller wraparound windshield, and a smoother roofline for better aero performance.

All of these changes came as the company’s Semi Factory, which is located on Gigafactory Nevada’s property, was finishing up construction in preparation for initial production phases, as Tesla is planning to ramp up manufacturing next year. CEO Elon Musk has said the Semi has attracted “ridiculous demand.”

The Semi has already gathered many large companies that have signed up to buy units, including Frito-Lay and PepsiCo., which have been helping Tesla test the vehicle in a pilot program to test range, efficiency, and other important metrics that will be a major selling point.

Tesla will be the Semi’s first user, though, and the truck will help solve some of the company’s logistics needs in the coming years.

Continue Reading

News

Tesla dominates in the UK with Model Y and Model 3 leading the way

Published

on

Credit: Tesla China

Tesla is dominating in the United Kingdom so far through 2025, and with about two weeks left in the year, the Model Y and Model 3 are leading the way.

The Model Y and Model 3 are the two best-selling electric vehicles in the United Kingdom, which is comprised of England, Scotland, Wales, and Northern Ireland, and it’s not particularly close.

According to data gathered by EU-EVs, the Model Y is sitting at 18,890 units for the year, while the Model 3 is slightly behind with 16,361 sales for the year so far.

The next best-selling EV is the Audi Q4 e-tron at 10,287 units, lagging significantly behind but ahead of other models like the BMW i4 and the Audi Q6 e-tron.

The Model Y has tasted significant success in the global market, but it has dominated in large markets like Europe and the United States.

For years, it’s been a car that has fit the bill of exactly what consumers need: a perfect combination of luxury, space, and sustainability.

Both vehicles are going to see decreases in sales compared to 2024; the Model Y was the best-selling car last year, but it sold 32,610 units in the UK. Meanwhile, the Model 3 had reached 17,272 units, which will keep it right on par with last year.

Tesla announces major milestone in the United Kingdom

Tesla sold 50,090 units in the market last year, and it’s about 8,000 units shy of last year’s pace. It also had a stronger market share last year with 13.2 percent of the sales in the market. With two weeks left in 2025, Tesla has a 9.6 percent market share, leading Volkswagen with 8 percent.

The company likely felt some impact from CEO Elon Musk’s involvement with the Trump administration and, more specifically, his role with DOGE. However, it is worth mentioning that some months saw stronger consumer demand than others. For example, sales were up over 20 percent in February. A 14 percent increase followed this in June.

Continue Reading

News

Tesla Insurance officially expands to new U.S. state

Tesla’s in-house Insurance program first launched back in late 2019, offering a new way to insure the vehicles that was potentially less expensive and could alleviate a lot of the issues people had with claims, as the company could assess and repair the damage itself.

Published

on

Credit: Tesla Insurance

Tesla Insurance has officially expanded to a new U.S. state, its thirteenth since its launch in 2019.

Tesla has confirmed that its in-house Insurance program has officially made its way to Florida, just two months after the company filed to update its Private Passenger Auto program in the state. It had tried to offer its insurance program to drivers in the state back in 2022, but its launch did not happen.

Instead, Tesla refiled the paperwork back in mid-October, which essentially was the move toward initiating the offering this month.

Tesla’s in-house Insurance program first launched back in late 2019, offering a new way to insure the vehicles that was potentially less expensive and could alleviate a lot of the issues people had with claims, as the company could assess and repair the damage itself.

It has expanded to new states since 2019, but Florida presents a particularly interesting challenge for Tesla, as the company’s entry into the state is particularly noteworthy given its unique insurance landscape, characterized by high premiums due to frequent natural disasters, dense traffic, and a no-fault system.

Tesla partners with Lemonade for new insurance program

Annual average premiums for Florida drivers hover around $4,000 per year, well above the national average. Tesla’s insurance program could disrupt this, especially for EV enthusiasts. The state’s growing EV adoption, fueled by incentives and infrastructure development, aligns perfectly with Tesla’s ecosystem.

Moreover, there are more ways to have cars repaired, and features like comprehensive coverage for battery damage and roadside assistance tailored to EVs address those common painpoints that owners have.

However, there are some challenges that still remain. Florida’s susceptibility to hurricanes raises questions about how Tesla will handle claims during disasters.

Looking ahead, Tesla’s expansion of its insurance program signals the company’s ambition to continue vertically integrating its services, including coverage of its vehicles. Reducing dependency on third-party insurers only makes things simpler for the company’s automotive division, as well as for its customers.

Continue Reading