Connect with us

News

SpaceX rocket test-fired for first Starlink launch since in-flight engine failure

Pictured here during its third launch, Falcon 9 booster B1051 is scheduled for its fourth launch on April 23rd. (Richard Angle)

Published

on

Just a month after an automatic launch abort sequence and subsequent in-flight engine failure, the SpaceX Falcon 9 is ready to return to flight. SpaceX’s sixth Starlink V1.0 and seventh overall launch of 60 Starlink satellites – initially expected on April 16th later delayed to April 23rd – will mark the triumphant return of a flight-proven booster.

Early on Thursday, April 16th – a week ahead of the scheduled launch attempt – the flight-proven B1051 Falcon 9 booster fully stacked with the integrated payload of 60 flat-stacked Starlink satellites, rolled out to Launch Complex 39-A at Kennedy Space Center. Just over twenty-four hours later on Friday, April 17th, the rocket and payload were raised into the vertical launching position. At noon on Friday, SpaceX teams conducted a wet dress rehearsal fully fueling the first stage booster with propellant – rocket grade kerosene (RP-1) and liquid oxygen (LOX) – before successfully conducting a full-duration, pre-launch ignition of all nine Merlin 1D engines while holding the rocket in place – called a static fire.

Shortly after the test completion, SpaceX confirmed the targeted Thursday, April 23rd launch attempt scheduled for 3:16 pm EDT from LC-39A via the company’s Twitter account. Along with the launch date, SpaceX confirmed that the upcoming Starlink-6 mission (seventh overall) will be the fourth attempted launch and recovery of booster B1051. This booster previously supported launches from three different launchpads in Florida and California. Perhaps most notably, it supported the successful first uncrewed demonstration mission of the Crew Dragon capsule in March of 2019.

SpaceX also confirmed that the protective nosecone encapsulating the satellite payload, called the payload fairing, is also recovered and reused flight-proven hardware. To date, SpaceX has reused fairing halves twice. Both instances have been conducted on internal Starlink missions, one in November 2019 and the most recent on March 18th’s Starlink-5 mission. Both featured fairing halves that were recovered after landing softly in the water of the Atlantic ocean. Ultimately, only the fairing halves of the most recent March 18th Starlink-5 mission were successfully recovered. The recovery attempt during November’s mission was called off due to rough seas.

Advertisement
The SpaceX fairing recovery vessel GO Ms. Tree returns to Port Canaveral with a recovered payload fairing half after a Starlink mission in March 2020. (Richard Angle for Teslarati)

According to SpaceX, April 23rd’s upcoming Starlink-6 mission will feature fairing halves recovered from the AMOS-17 mission launched in August of 2019. As previously covered by Teslarati, the mission resulted in a fairing half caught in a large net mounted atop one of the company’s fairing recovery vessels, GO Ms. Tree. The other half was scooped up after a gentle water landing. Starlink-6 will be the first time that a fairing half caught in a net is re-used in conjunction with a half recovered from the water. If the fairing halves perform nominally, as expected, it will help SpaceX to push the envelope of flight-proven hardware reuse even further.

Closely mirroring the Starlink-5 mission, SpaceX will once again launch from LC-39A and utilize a slightly altered mission profile. This will allow the Falcon 9’s second stage to deliver the 60 flat-stack satellites to an elliptical, rather than circular, orbit intended to reduce stress during booster re-entry and landing. Although used with previous missions, this particular mission profile has yet to result in a successful booster recovery.

If successful, Starlink-6 will be the first time a booster lands on the autonomous spaceport drone ship “Of Course I Still Love You” since this boosters last landing in January 2020 following the successful Starlink-4 mission. As of Sunday morning, April 19th, “Of Course I Still Love You” departed Port Canaveral to travel to the recovery zone some 629km downrange ahead of Thursday’s launch attempt. The crew recovery vessel, GO Quest, followed shortly thereafter. The two fairing recovery vessels GO Ms. Tree and GO Ms. Chief are expected to leave port early in the week as the ships are built for speed and will reach the destination much quicker.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Advertisement

Space Reporter.

Advertisement
Comments

News

IM Motors co-CEO apologizes to Tesla China over FUD comments

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

Published

on

Credit: Grok Imagine

Liu Tao, co-CEO of IM Motors, has publicly apologized to Tesla China for comments he made in 2022 suggesting a Tesla vehicle was defective following a fatal traffic accident in Chaozhou, China. 

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

IM Motors co-CEO issues apology

Liu Tao posted a statement addressing remarks he made following a serious traffic accident in Chaozhou, Guangdong province, in November 2022, as noted in a Sina News report. Liu stated that based on limited public information at the time, he published a Weibo post suggesting a safety issue with the Tesla involved in the crash. The executive clarified that his initial comments were incorrect.

“On November 17, 2022, based on limited publicly available information, I posted a Weibo post regarding a major traffic accident that occurred in Chaozhou, suggesting that the Tesla product involved in the accident posed a safety hazard. Four hours later, I deleted the post. In May 2023, according to the traffic police’s accident liability determination and relevant forensic opinions, the Chaozhou accident was not caused by Tesla brake failure. 

Advertisement

“The aforementioned findings and opinions regarding the investigation conclusions of the Chaozhou accident corrected the erroneous statements I made in my previous Weibo post, and I hereby clarify and correct them. I apologize for the negative impact my inappropriate remarks made before the facts were ascertained, which caused Tesla,” Liu said. 

Investigation and court findings

The Chaozhou accident occurred in Raoping County in November 2022 and resulted in two deaths and three injuries. Video footage circulated online at the time showed a Tesla vehicle accelerating at high speed and colliding with multiple motorcycles and bicycles. Reports indicated the vehicle reached a speed of 198 kilometers per hour.

The incident drew widespread attention as the parties involved provided conflicting accounts and investigation details were released gradually. Media reports in early 2023 said investigation results had been completed, though the vehicle owner requested a re-investigation, delaying the issuance of a final liability determination.

The case resurfaced later in 2023 following a defamation lawsuit filed by Tesla China against a media outlet. According to a court judgment cited by Shanghai Securities News, forensic analysis determined that the fatal accident was unrelated to any malfunction on the Tesla’s braking or steering systems. The court also ruled that the media outlet must publish an apology, address the negative impact on Tesla China’s reputation, and pay a penalty of 30,000 yuan.

Continue Reading

Elon Musk

SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report

The update was reportedly shared to Reuters by people familiar with the matter. 

Published

on

(Credit: T-Mobile)

SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone. 

The update was reportedly shared to Reuters by people familiar with the matter. 

A possible Starlink Phone

As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.

SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.

Advertisement

Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.” 

Starlink and SpaceX’s revenue

Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.

SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.

Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”

Advertisement
Continue Reading

Elon Musk

FCC accepts SpaceX filing for 1 million orbital data center plan

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.

Published

on

Credit: SpaceX/X

The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment. 

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.

FCC opens SpaceX’s proposal for comment

In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.

The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.

Advertisement

FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.

What SpaceX is proposing to build

As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.

The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.

As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.

Advertisement
Continue Reading