Connect with us

News

SpaceX to launch “next-generation satellite-servicing vehicle” for Northrop Grumman

Published

on

Northrop Grumman subsidiary SpaceLogistics has selected SpaceX to launch its first Mission Robotic Vehicle (MRV) – better described as the company’s “next-generation satellite-servicing” spacecraft.

As far as SpaceX’s Falcon 9 rocket is concerned, MRV-1 is just another geostationary satellite for it to deliver to a transfer orbit around 35,800 kilometers (~22,200 mi) above Earth’s surface as early as “spring 2024.” As of now, SpaceX Falcon rockets have launched more than 35 satellites to geostationary transfer orbits (GTO) and have at least 18 more geostationary launch contracts on its manifest – 19 including MRV-1. MRV-1 is no ordinary geostationary communications satellite, however.

MRV isn’t a communications satellite at all, in fact. Instead, designed to be the second generation of Northrop Grumman’s satellite life-extension spacecraft, MRV aims to build upon the successes of the company’s first two Mission Extension Vehicles (MEVs). The first (MEV-1) became the first spacecraft in history to dock with another spacecraft in geostationary orbit (GEO) in February 2020. The second, MEV-2, successfully launched and docked with a different geostationary communications satellite in 2021. Both MEVs did exactly what they were supposed to, effectively giving their host satellites – Intelsat 10-02 and 901, both more than 15 years old – at least five more years of operational life.

While SpaceLogistics’ accomplishments are thus extremely impressive, the general MEV concept and parts of its execution have some flaws. First, the ‘service’ offered appears to be extremely expensive, costing Intelsat – the first and only customer, thus far – at least $13 million per year for the five years MEV-1 will be servicing Intelsat-901. No other MEV contracts have been confirmed, which is not a major surprise. Assuming zero upfront costs for prospective customers, $65 million for an extra five years of operations represents a substantial fraction of the price of some simpler replacement satellites, many of which are now designed to operate for at least 15 years.

MEV-1’s spectacular rendezvous with Intelsat-901.

Put simply, at the secretive price point SpaceLogistics is offering, MEVs are a mostly ambiguous financial proposition for the geostationary satellite communications industry, which tends to operate on razor-thin margins. Though SpaceLogistics hasn’t said as much, MRV seems to be a response to the issue of affordability. Instead of building one large, expensive MEV that can only service a single GEO satellite, MRV aims to operate more like a multipurpose space tug.

To complement MRV, Northrop Grumman is also developing Mission Extension Pods (MEPs) – smaller spacecraft designed to still add at least 5-6 years of life to an aging GEO satellite. MRVs – each about 3 tons (~7000 lb) will theoretically be able to carry several MEPs (400 kg/900 lb apiece) into geostationary orbit and install the pods on several different satellites. Additionally, it appears that SpaceLogistics will sell the pods outright, presumably precluding the need for expensive recurring service contracts like those Intelsat signed for MEV life extension.

Advertisement
-->

According to Northrop Grumman, MEPs will actually propel themselves into GEO before being recaptured and installed by MRV – requiring two rendezvous and docking maneuvers per satellite instead of one. It’s entirely unclear why that added complexity is preferable over the obvious alternative, in which MRV would launch with a number of MEPs, carry them to GEO, and install them when needed.

Nonetheless, assuming Northrop Grumman plans to offer MEP life-extension pods for less than it charged for MEVs, it’s not hard to imagine the service becoming a no-brainer for communications providers with satellites that are close to running out of propellant. If the cost of several extra years of operational life is lower than the cost of an equivalent fraction of the lifespan of a new replacement satellite, it’s difficult to imagine how satellite operators could afford not to take advantage of life extension.

Northrop Grumman says it’s already sold one MEP – to launch with MRV-1 on Falcon 9 – to Australian telecom provider Optus and has a full manifest for MEPs “through mid-2026.”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Investor's Corner

Tesla analyst maintains $500 PT, says FSD drives better than humans now

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Published

on

Credit: Tesla

Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers. 

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Analysts highlight autonomy progress

During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.

The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report. 

Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”

Advertisement
-->

Street targets diverge on TSLA

While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.

Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements. 

Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs. 

Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading