News
SpaceX wants to unleash Starhopper but longer Raptor test fires come first
According to SpaceX CEO Elon Musk, the next round of Starhopper activity will focus on removing the spacecraft prototype’s tethers and performing far more substantial hop tests.
Longer tests demand that SpaceX begins expanding the known performance envelope of its full-scale Raptor engine. Towards that end, longer-duration tests would need to be done at the company’s McGregor, TX development facilities to reduce risk, tests that Musk confirmed are already well underway. A recent Raptor static fire reportedly lasted no less than 40 seconds, more than enough time for a single-engine Starhopper to significantly expand both the maximum altitude and velocity of future hop tests. In support of the upcoming Starhopper test campaign, significant construction work is also ongoing at SpaceX’s Boca Chica test and development facilities.

Unleashing the Hopper
During the months of March and April, SpaceX’s South Texas team effectively completed Starhopper and put the prototype through its first real tests. The process began with tank proof tests in which Starhopper’s tanks were filled with liquid nitrogen – relatively neutral and unreactive – to safely identify and repair any leaks, while also subjecting the vehicle to cryogenic temperatures. The proof testing also put the newly installed ground systems (GSE) and vehicle-pad connection hardware through their paces before moving to Starhopper’s nominal liquid oxygen and liquid methane propellant.
Following at least half a dozen or so wet dress rehearsals (WDRs) that saw Starhopper loaded with LOx and methane, SpaceX technicians analyzed the health of the prototype and soon began live tests with a Raptor engine installed. Designed to produce no less than 2000 kN (450,000 lbf, 205 mT) of thrust at full throttle, Raptor offers more than twice the max thrust of the latest variant of the Merlin 1D engine that powers Falcon 9 and Heavy (941 kN or 212,000 lbf). In other words, a single Raptor should be more than enough to lift Starhopper off the ground 150+ tons of propellant aboard.
After several unsuccessful test attempts, Starhopper completed two static fires (<10s combined) and hopped – tethered – a handful of feet off the ground on April 3rd and 5th, three weeks after Raptor was first installed. Days later, the lone Raptor engine was removed from Starhopper and shipped back to SpaceX’s Hawthorne, CA factory or McGregor, TX testing facilities for post-test analysis and inspection. In short, SpaceX used Starhopper as a sort of ad hoc test stand for the second serial Raptor (SN02) produced, completing two major acceptance tests simultaneously.
A handful of concise tweets published by Musk in the last few days of April implicitly confirmed that the next steps for Starhopper involved untethered flights off its South Texas pad, once again powered by a single Raptor engine. As both the prospective altitudes and flight times rise for future Starhopper tests, so do the risks posed to SpaceX’s adjacent facilities and the prototype itself. To minimize those risks and progress the Raptor program as a whole, SpaceX has been extensively testing the third serial Raptor (SN03) at its McGregor facilities. Instead of a rushed test regime similar to the one that almost completely destroyed Raptor SN01 less than two weeks after testing began, SN03 is participating in a more cautious and systematic series of tests.


Confirmed by Elon Musk, this included significantly increasing the length of Raptor SN03’s latest static fires, culminating in an April 27th test that lasted ~40 seconds. Above all else, long test fires are necessary to demonstrate that Raptor can reliably operate for dozens of seconds at a time, given that any failure leading to a loss of thrust could cause Starhopper – basically a controlled explosive device – to fall out of the sky. The famous Musk/SpaceX ethos of moving fast and breaking things does not preclude a pragmatic attitude towards the destruction of facilities and prototypes that could take months and millions of dollars to rebuild.
The ETA of future hop tests is unclear. For the time being, it appears that SpaceX’s South Texas facilities will be caught up in construction work for at least another week. Whether or not Raptor SN03 is next in line for installation on Starhopper, SpaceX will likely put it through several more long-duration static fires before moving ahead with untethered hop tests. All things considered, the rough Starship prototype is unlikely to restart powered testing for another two or so weeks. Stay tuned!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.