

News
SpaceX "DARKSAT" results: can Starlink and astronomy happily coexist?
Astronomers have begun to gather and analyze detailed observations of a SpaceX Starlink satellite prototype officially labeled DARKSAT and the initial results hint that the satellite constellation should be able to happily coexist with ground-based astronomy in the future.
Since SpaceX began launching batches of 60 Starlink satellites in May 2019, the company has raised the ire of parts of the astronomy community and simultaneously awed and inspired many less technical observers with clusters of shooting star-like satellites that are easily visible after launches. While the mid-sized spacecraft do become much dimmer as they raise their orbits from ~300 km (185 mi) to 550 km (340 mi), they are far from invisible even at that operational altitude. It’s safe to say that the current impact on ground-based astronomy is still just shy of negligible even with 360 satellites in orbit, but that impact is assuredly greater than zero and the relatively bright spacecraft have already interrupted telescope observations at many sites around the world.
Given that the 360 satellites already in orbit are just a tiny fraction of the ~4400, ~12,000, or even ~40,000 that SpaceX could one day launch, it would be irresponsible to argue that the constellation’s impact – and the impact of others like it – will continue to be minor as the number of satellites grows. Thankfully, while it doesn’t appear that prospective low Earth orbit (LEO) constellation architects anticipated the potential astronomy impact, SpaceX’s Starlink team has rapidly responded and already launched a satellite featuring tweaks designed to dim its appearance from the ground. For several reasons, the initial results from “DARKSAT” are extremely promising – now visible below in some of the first photos offering a useful comparison.
Launched on January 7th, 2020, a set of 20 spacecraft including DARKSAT – representing a single “plane” of the broader Starlink constellation – all arrived at their operational ~550 km (340 mi) orbits by February 23rd. As previously discussed on Teslarati, initial results first published on March 18th revealed that the Starlink DARKSAT prototype – essentially an early alpha test for darkening techniques – was already 55% darker than unmodified spacecraft. While making satellites less reflective makes thermal management a much greater challenge, DARKSAT has managed to raise its orbit and begin operations without issue, although it’s unknown whether the satellite’s antennas and avionics are also functioning nominally.
For darker spacecraft, perhaps the most important test will be long-term reliability, as constantly absorbing more heat than a reflective satellite is likely to put their structure, avionics, and radiators through significantly more thermal stress. As such, SpaceX may launch a limited number of additional darkened prototypes over the coming months but is much less likely to darken all satellites on any given launch until DARKSATs have successfully operated in orbit for months or even years.
On the ground, SpaceX may try to perform sped-up stress testing, but proving that darker satellites are a viable solution will almost invariably take time. Earlier this month, CEO Elon Musk revealed that SpaceX may attempt to design deployable solar shades for Starlink satellites if darkening their bodies is not enough to fully mitigate major impacts to astronomy. Knowing SpaceX, the first in-orbit solar shade test(s) could happen during any of several upcoming Starlink launches.

Adding reliable, deployable solar shades without appreciably raising Starlink’s production costs could be a major challenge, given the fundamental complexity of large, deployable mechanisms in space, but SpaceX – if anyone – is likely up to the challenge. More importantly, the fact that SpaceX’s very first attempt at reducing Starlink albedo (reflectivity) has produced a satellite 55% darker than its peers suggests that much more can probably be done along those lines, given additional time for extra experiments and deeper optimization.
As a result, it may be the case that SpaceX ends up launching 750-1000+ reflective Starlink satellites before an affordable, mass-producible DARKSAT variant is ready to take over. In that event, Starlink could plausibly have a small to moderate negative impact on ground-based astronomy for several years. However, comments made by SpaceX executives over the years suggest that no single Starlink satellite is likely to operate for more than five or so years before being replaced, meaning that the entire constellation would be continuously refreshed (as long as it’s generating revenue). Even if a thousand bright(er) Starlink satellites make life a bit harder for some astronomers, the fact remains that the consequences of any single Starlink satellite variant – assuming SpaceX remains serious about fully mitigating the constellation’s impact – are inherently temporary.
If SpaceX continues to make progress darkening satellites and developing cheap solar shades, it seems all but guaranteed that even a constellation of tens of thousands of Starlink satellites will be able happily coexist with the astronomy community, all the while delivering cheap, fast internet to millions of people – especially those lacking access – around the world.
Elon Musk
Elon Musk reveals when SpaceX will perform first-ever Starship catch
“Starship catch is probably flight 13 to 15, depending on how well V3 flights go,” Musk said.

Elon Musk revealed when SpaceX would perform the first-ever catch attempt of Starship, its massive rocket that will one day take life to other planets.
On Tuesday, Starship aced its tenth test flight as SpaceX was able to complete each of its mission objectives, including a splashdown of the Super Heavy Booster in the Gulf, the deployment of eight Starlink simulators, and another splashdown of the ship in the Indian Ocean.
It was the first launch that featured a payload deployment:
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
SpaceX was transparent that it would not attempt to catch the Super Heavy Booster, something it has done on three previous occasions: Flight 5 on October 13, 2024, Flight 7 on January 16, and Flight 8 on March 6.
This time, it was not attempting to do so. However, there are bigger plans for the future, and Musk detailed them in a recent post on X, where he discussed SpaceX’s plans to catch Starship, which would be a monumental accomplishment.
Musk said the most likely opportunities for SpaceX to catch Starship itself would be Flight 13, Flight 14, and Flight 15, but it depends on “how well the V3 flights go.”
The Starship launched with Flight 10 was a V2, which is the same size as the subsequent V3 rocket but has a smaller payload-to-orbit rating and is less powerful in terms of initial thrust and booster thrust. Musk said there is only one more V2 rocket left to launch.
Starship catch is probably flight 13 to 15, depending on how well V3 flights go
— Elon Musk (@elonmusk) August 27, 2025
V3 will be the version flown through 2026, as V4, which will be the most capable Starship build SpaceX manufactures, is likely to be the first company ship to carry humans to space.
Musk said that SpaceX planned to “hopefully” attempt a catch of Starship in 2025. However, it appears that this will likely be pushed back to 2026 due to timing.
SpaceX will take Starship catch one step further very soon, Elon Musk confirms
SpaceX would need to launch the 11th and 12th test flights by the end of the year in order to get to Musk’s expected first catch attempt of Flight 13. It’s not unheard of, but the company will need to accelerate its launch rate as it has only had three test flights this year.
News
Tesla Robotaxi rival Waymo confirms massive fleet expansion in Bay Area
New data from the California Public Utilities Commission (CPUC) said Waymo had 1,429 vehicles operating in California, and 875 of them were “associated with a terminal in San Francisco,” according to The SF Examiner.

Tesla Robotaxi rival Waymo has confirmed that it has expanded its fleet of driverless ride-sharing vehicles in the Bay Area of California massively since its last public disclosure.
It is perhaps one of the most important metrics in the race for autonomous supremacy, along with overall service area. Tesla has seemed to focus on the latter, while expanding its fleet slowly to maintain safety.
Waymo, on the other hand, is bringing its fleet size across the country to significant levels. In March, it told The SF Examiner that there were over 300 Waymos in service in the San Francisco area, which was not a significant increase from the 250 vehicles on the road it reported in August 2023.
In May, the company said in a press release that it had more than 1,500 self-driving Waymos operating nationwide. More than 600 were in the San Francisco area.
Tesla analyst compares Robotaxi to Waymo: ‘The contrast was clear’
However, new data from the California Public Utilities Commission (CPUC) said Waymo had 1,429 vehicles operating in California, and 875 of them were “associated with a terminal in San Francisco,” according to The SF Examiner.
CPUC data from March 2025 indicated that there were a total of 1,087 Waymo vehicles in California, with 762 located in San Francisco. Some were test vehicles, others were deployed to operate as ride-sharing vehicles.
The company’s August update also said that it deploys more than 2,000 commercial vehicles in the United States. That number was 1,500 in May. There are also roughly 400 in Phoenix and 500 in Los Angeles.
While Waymo has done a good job of expanding its fleet, it has also been able to expand its footprint in the various cities it is operating in.
Most recently, it grew its geofence in Austin, Texas, to 90 square miles. This outpaced Tesla for a short period before the company expanded its Robotaxi service area earlier this week to roughly 170 square miles.
Tesla one-ups Waymo once again with latest Robotaxi expansion in Austin
The two companies have drastically different approaches to self-driving, as Waymo utilizes LiDAR, while Tesla relies solely on cameras for its suite. Tesla CEO Elon Musk has made no mistake about which he believes to be the superior solution to autonomy.
News
Tesla launches Full Self-Driving in a new region
Today, Tesla launched Full Self-Driving in Australia for purchase by car buyers for $10,100, according to Aussie automotive blog Man of Many, which tried out the suite earlier this week.

Tesla has launched its Full Self-Driving suite in a new region, marking a significant step in the company’s progress to expand its driver assistance suite on a global scale.
It is also the first time Tesla has launched FSD in a right-hand-drive market.
Today, Tesla launched Full Self-Driving in Australia for purchase by car buyers for $10,100, according to Aussie automotive blog Man of Many, which tried out the suite earlier this week.
Previously, Basic and Enhanced Autopilot suites were available, but the FSD capability now adds Traffic Light and Stop Sign Control, along with all the features of the previous two Autopilot suites.
🚨 Tesla has officially launched Full Self-Driving in Australia for the price of $10,100 outright.
The move marks a significant step in Tesla’s progress to expand the suite on a global scale pic.twitter.com/zzHa8Ngqls
— TESLARATI (@Teslarati) August 28, 2025
It is the first time Tesla has launched the suite by name in a region outside of North America. In China, Tesla has “City Autopilot,” as it was not permitted to use the Full Self-Driving label for regulatory reasons.
However, Tesla still lists Full Self-Driving (Supervised) as available in the U.S., Canada, China, Mexico, and Puerto Rico.
The company teased the launch of the suite in Australia earlier this week, and it appeared to have been released to select media members in the region earlier this week:
Tesla FSD upcoming Australia release seemingly teased bv media
The rollout of Full Self-Driving in the Australian market will occur in stages, as Model 3 and Model Y vehicles with Hardware 4 will receive the first batch of FSD rollouts in the region.
TechAU also reported that “the initial deployment of FSDs in Australia will roll out to a select number of people outside the company, these people are being invited into Tesla’s Early Access Program.”
Additionally, the company reportedly said it is “very close” to unlocking FSD in customer cars:
BREAKING: Tesla has officially announced that FSD (Supervised) is launching in Australia, marking a huge milestone for the company.
The rollout will happen in stages. HW4 Model 3s and Model Ys will get it first. Tesla says it is “very close” to being unlocked in customer cars.… pic.twitter.com/r1dYnFRa6o
— Sawyer Merritt (@SawyerMerritt) August 28, 2025
Each new Tesla sold will also come with a 30-day free trial of the suite.
Australia is the sixth country to officially have Full Self-Driving available to them, following the United States, Canada, China, Mexico, and Puerto Rico.
Here’s the first look at the suite operating in Australia:
-
Elon Musk1 day ago
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
-
News22 hours ago
Tesla appears to have teased a long-awaited Model Y trim for a Friday launch
-
News3 days ago
Tesla Model Y L sold out for September 2025
-
News1 day ago
Tesla China working overtime to deliver Model Y L as quickly as possible
-
News1 day ago
Tesla Semi earns strong reviews from veteran truckers
-
News8 hours ago
Tesla launches Full Self-Driving in a new region
-
News4 days ago
Tesla makes big change to encourage Full Self-Driving purchases
-
Elon Musk3 days ago
Elon Musk argues lidar and radar make self driving cars more dangerous