News
SpaceX set to launch 240th Starlink satellite as space internet nears prime time
SpaceX is just hours away from a Monday launch that should leave the company with almost 250 Starlink satellites in orbit — the latest in several recent steps towards prime time for the fledgling space internet constellation.
Scheduled to lift off no earlier than (NET) 9:49 am EST (14:49 UTC) on January 27th, a twice-flown Falcon 9 booster, new upper stage, 60 Starlink satellites, and a mysteriously blank payload fairing will try to thread the needle from SpaceX’s Cape Canaveral Air Force Station (CCAFS) LC-40 pad. Weather is tepid according to USAF forecasts and Monday’s – already just 50% ‘go’ – doesn’t even account for extremely high-speed upper-level winds that will absolutely have to wane before Falcon 9 can launch.
SpaceX’s fourth dedicated launch, today’s mission – known as Starlink V1 L3 (the third launch of v1.0 satellites) – will raise the number of spacecraft the company has placed in orbit to 240. Based on past statements from executives and SpaceX’s very own Starlink.com website, successfully completing Starlink V1 L3 could place the company just a hop, skip, and a jump away from the space-based internet constellation’s prime-time. With a little luck, the fledgling satellite internet provider could be serving customers much sooner than almost anyone might imagine.
As of now, it appears that SpaceX will indeed attempt to launch later today despite a good chance that weather conditions will force the company to try again on January 28th. Thankfully, SpaceX’s unique operating procedures brings with it a fair amount of flexibility to scrub launches with very little consequence less than 40 minutes before liftoff.

SpaceX is able to wait that long out of sheer necessity. The company introduced the use of ‘subcooled’ liquid oxygen and kerosene on its Falcon launch vehicles all the way back in 2016, encouraged by the fact that its propellant becomes significantly denser as it gets colder. By toeing the line between liquid oxygen and kerosene actually solidifying into slush, SpaceX was able to boost Falcon 9’s payload capabilities by an incredible ~30% or more. To get that benefit, however, Falcon 9’s propellant must remain as cold as possible, and it begins warming the second that it leaves its far-more-insulated storage tanks and enters Falcon 9.

As a result, SpaceX must load Falcon 9 and Falcon Heavy with propellant as late as physically possible, translating to no sooner than 35 minutes before liftoff on all recent launches. In other words, if the weather is firmly on the ‘bad’ side of things at T-38:00-35:00, SpaceX is often able to scrub a given launch attempt before propellant loading begins, both saving the rocket from an unnecessary thermal cycle and saving propellant that might otherwise have to be wasted.
120 satellites, 20 days
Weather challenges and the likelihood of a 24-hour delay aside, SpaceX will soon launch its third batch of upgraded Starlink v1.0 satellites — also the company’s fourth dedicated launch of 60 spacecraft. If things go as planned, SpaceX will have launched nearly 250 satellites total – all but 5 (or so) of which are happily operating in Earth orbit right now.


Deemed Starlink V1 L3, a successful mission later today will also mean that SpaceX has launched an incredible 120 spacecraft – weighing more than 30 metric tons – in less than 20 days. It’s difficult to say for sure, but it’s very likely that that will mark the latest global record secured by SpaceX, following on the heels of the company’s recent ascendance as the newest owner of the world’s largest private satellite constellation (~180 satellites).
However, the ultimate goal of Starlink is, of course, to deliver unprecedentedly high-performance internet service to customers anywhere on Earth. The “anywhere on Earth” modifier is likely more than 20 dedicated SpaceX launches away from reality, but the company has said it will begin serving internet to customers in “the Northern U.S. and Canada in 2020”. As of mid-2019, SpaceX indicated that that regional North American beta test could begin after just six launches.

More recent comments from a SpaceX executive suggest that it could require more like 8 launches of 60 Starlink satellites before initial service can begin in North America, but that ultimately means that the company should be no less than 50-65% of the way there after Starlink V1 L3. With a little luck, that could mean that SpaceX is just two or three Starlink launches away from inviting the first non-employee customers onto the company’s space-based internet. Given SpaceX’s current launch cadence, six Starlink launches may well be well behind the company by the end of February – perhaps just a month or less from now.
Weather permitting, tune in to SpaceX.com/webcast around 9:35 am EST (14:35 UTC) later today (January 18th) to watch SpaceX’s latest Starlink launch live.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.