News
SpaceX Starlink competitor OneWeb misled the FCC, media with false “near-miss” narrative
In the latest trials and tribulations of a SpaceX Starlink competitor that went bankrupt after spending $3 billion to launch just 74 small internet satellites, it appears that OneWeb knowingly misled both media and US regulators over a claimed “near-miss” with a Starlink satellite.
Back on April 9th, OneWeb went public with claims that SpaceX had mishandled its response to a routine satellite collision avoidance warning from the US military, which monitors the location of satellites and space debris. According to OneWeb government affairs chief Chris McLaughlin, SpaceX disabled an automated system designed to detect and automatically command Starlink satellite collision avoidance maneuvers to let OneWeb move its satellite instead. McLaughlin also stated that “Coordination is the issue – it is not sufficient to say ‘I’ve got an automated system.’”
He also recently criticized the maneuverability of Starlink satellites, claiming that “Starlink’s engineers said they couldn’t do anything to avoid a collision and switched off the collision avoidance system so OneWeb could maneuver around the Starlink satellite without interference.” As it turns out, OneWeb’s “near-miss” appears to have been a farce and the company scrambled to promise to retract those statements in an April 20th meeting with the FCC and SpaceX.
In far more egregious comments made on April 20th to the Wall Street Journal, a publication with a long history of blindly disseminating anti-SpaceX rhetoric, McLaughlin likened OneWeb’s satellites to “Ford Focus” cars and attempted to lambast Starlink satellites by comparing them to “Teslas: They launch them and then they have to upgrade and fix them, or even replace them altogether.”
Over the past 17 months, SpaceX has launched more than 1380 operational Starlink v1.0 satellites, some 870 of which are operational. Another ~440 are in the process of reaching operational orbits. All told, some 1365 are still in orbit and around 1345 of those satellites are working as expected for a total Starlink v1.0 failure rate of roughly 2.5%. As is SpaceX’s bread and butter, however, reliability has been continuously improving and of ~960 Starlink satellites launched over the last ~12 months, the overall failure rate has dropped to less than 1% – an almost threefold improvement.
After exiting bankruptcy last November, OneWeb has completed just two more launches for a total of 140 operational satellites in orbit of a planned ~650. Operating at a much higher ~1200 km (~750 mi) orbit, any failure of OneWeb satellites would produce debris that could remain in orbit for decades, whereas SpaceX has explicitly chosen much lower ~550 km (~340 mi) orbits, meaning that debris reenters in a matter of years. At Starlink’s sub-300-kilometer (~185 mi) insertion orbit, any faulty satellites screened during SpaceX’s checkout process reenter in a matter of days or weeks thanks to drag from Earth’s atmosphere.
The first phase of SpaceX’s Starlink constellation will require approximately 4400 satellites in low Earth orbit (LEO) and the company is already almost a third of the way to that milestone. A second phase could see those numbers grow as high as ~12,000, followed by a third phase with more than 40,000 satellites much further down the road. Relative to OneWeb, Starlink is dramatically more ambitious and each SpaceX satellite offers superior bandwidth and latency in a bid to blanket the Earth in affordable, high-quality broadband internet.
Of course, as a consequence of needing so many satellites to build out a network with enough bandwidth to serve tens to hundreds of millions of people, there is an obvious risk that unreliable satellites could make LEO a much more challenging place to operate for both SpaceX and the rest of the world. It also demands an entirely new approach to collision avoidance given the impracticality of human operators manually managing a fleet of thousands – or tens of thousands – of satellites.
Towards that end, SpaceX is developing an autonomous collision avoidance system – though virtually nothing is known about that system outside of the company, creating a far from optimal situation for all other satellite operators. Nevertheless, aside from one publicized avoidance maneuver in 2019, SpaceX appears to be quickly becoming a responsible and (mostly) transparent operator and custodian.
In an apparent attempt to capitalize on vague fears of “space debris” and satellite collisions, OneWeb – or perhaps just McLaughlin – took it upon itself to consciously misconstrue a routine, professional process of collision-avoidance coordination between OneWeb and SpaceX. McLaughlin ran a gauntlet of media outlets to drag SpaceX through the mud and criticize both the company’s technology and response, ultimately claiming that SpaceX’s Starlink satellite was incapable of maneuvering out of the way.
Instead, according to a precise, evidenced timeline of events presented by SpaceX to the FCC, the coordination was routine, uneventful, and entirely successful. OneWeb itself explicitly asked SpaceX to disable its autonomous collision avoidance software and allow the company to maneuver its own satellite out of the way after SpaceX made it clear that the Starlink spacecraft could also manage the task. The event was neither “urgent” or a “close call,” as OneWeb and media outlets later claimed. SpaceX says it has been coordinating similar avoidance maneuvers with OneWeb since March 2020.
Most damningly, SpaceX says that immediately after OneWeb disseminated misleading quotes about the event to the media, “OneWeb met with [FCC] staff and Commissioners [to demand that] unilateral conditions [be] placed on SpaceX’s operations.” Those conditions could have actually made coordination harder, “demonstrating more of a concern with limiting [OneWeb’s] competitors than with a genuine concern for space safety.” Crucially, despite lobbying to restrict its competitors, “OneWeb [has] argued forcefully that [it] should be exempt from Commission rules for orbital debris mitigation due to their status as non-U.S. operators.”
In simple terms, OneWeb is trying to exploit the FCC to suppress its competition while letting it roam free of the exact same regulations. Meanwhile, SpaceX is focused on launching satellites and serving tens of thousands of beta customers as Starlink speeds towards virtually uninterrupted global coverage barely a year and a half after operational launches began – all while coordinating with dozens of other satellite operators to be the best ‘neighbor’ it can be in space.
News
Tesla expands new Full Self-Driving program in Europe
Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.
Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.
People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.
It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.
Tesla confirmed the arrival of the program to Denmark and Switzerland on X:
Now available in Denmark & Switzerland
🇩🇰 https://t.co/IpCSwHO566 https://t.co/V2N5EarLNX
— Tesla Europe & Middle East (@teslaeurope) December 9, 2025
The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.
Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.
CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”
The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.
Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key
Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.
The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.
News
Tesla ramps hiring for Roadster as latest unveiling approaches
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.
Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.
The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.
Technical Program Manager, Battery Manufacturing
Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:
“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”
Manufacturing Engineer, Roadster
Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”
Manufacturing Vision Engineer, Battery Vision
This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:
“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”
Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.
Roadster Unveiling
Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.
Musk said on the Joe Rogan Experience Podcast in late October:
“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”
Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.
Investor's Corner
Tesla Full Self-Driving statistic impresses Wall Street firm: ‘Very close to unsupervised’
The data shows there was a significant jump in miles traveled between interventions as Tesla transitioned drivers to v14.1 back in October. The FSD Community Tracker saw a jump from 441 miles to over 9,200 miles, the most significant improvement in four years.
Tesla Full Self-Driving performance and statistics continue to impress everyone, from retail investors to Wall Street firms. However, one analyst believes Tesla’s driving suite is “very close” to achieving unsupervised self-driving.
On Tuesday, Piper Sandler analyst Alexander Potter said that Tesla’s recent launch of Full Self-Driving version 14 increased the number of miles traveled between interventions by a drastic margin, based on data compiled by a Full Self-Driving Community Tracker.
🚨 Piper Sandler reiterated its Overweight rating and $500 PT on Tesla $TSLA stock
Analyst Alexander Potter said FSD is near full autonomy and latest versions showed the largest improvement in disengagements, from 440 miles to 9,200 miles between critical interventions pic.twitter.com/u4WCLfZcA9
— TESLARATI (@Teslarati) December 9, 2025
The data shows there was a significant jump in miles traveled between interventions as Tesla transitioned drivers to v14.1 back in October. The FSD Community Tracker saw a jump from 441 miles to over 9,200 miles, the most significant improvement in four years.
Interestingly, there was a slight dip in the miles traveled between interventions with the release of v14.2. Piper Sandler said investor interest in FSD has increased.
Full Self-Driving has displayed several improvements with v14, including the introduction of Arrival Options that allow specific parking situations to be chosen by the driver prior to arriving at the destination. Owners can choose from Street Parking, Parking Garages, Parking Lots, Chargers, and Driveways.
Additionally, the overall improvements in performance from v13 have been evident through smoother operation, fewer mistakes during routine operation, and a more refined decision-making process.
Early versions of v14 exhibited stuttering and brake stabbing, but Tesla did a great job of confronting the issue and eliminating it altogether with the release of v14.2.
Tesla CEO Elon Musk also recently stated that the current v14.2 FSD suite is also less restrictive with drivers looking at their phones, which has caused some controversy within the community.
Although we tested it and found there were fewer nudges by the driver monitoring system to push eyes back to the road, we still would not recommend it due to laws and regulations.
Tesla Full Self-Driving v14.2.1 texting and driving: we tested it
With that being said, FSD is improving significantly with each larger rollout, and Musk believes the final piece of the puzzle will be unveiled with FSD v14.3, which could come later this year or early in 2026.
Piper Sandler reaffirmed its $500 price target on Tesla shares, as well as its ‘Overweight’ rating.