News
SpaceX Starlink competitor OneWeb misled the FCC, media with false “near-miss” narrative
In the latest trials and tribulations of a SpaceX Starlink competitor that went bankrupt after spending $3 billion to launch just 74 small internet satellites, it appears that OneWeb knowingly misled both media and US regulators over a claimed “near-miss” with a Starlink satellite.
Back on April 9th, OneWeb went public with claims that SpaceX had mishandled its response to a routine satellite collision avoidance warning from the US military, which monitors the location of satellites and space debris. According to OneWeb government affairs chief Chris McLaughlin, SpaceX disabled an automated system designed to detect and automatically command Starlink satellite collision avoidance maneuvers to let OneWeb move its satellite instead. McLaughlin also stated that “Coordination is the issue – it is not sufficient to say ‘I’ve got an automated system.’”
He also recently criticized the maneuverability of Starlink satellites, claiming that “Starlink’s engineers said they couldn’t do anything to avoid a collision and switched off the collision avoidance system so OneWeb could maneuver around the Starlink satellite without interference.” As it turns out, OneWeb’s “near-miss” appears to have been a farce and the company scrambled to promise to retract those statements in an April 20th meeting with the FCC and SpaceX.
In far more egregious comments made on April 20th to the Wall Street Journal, a publication with a long history of blindly disseminating anti-SpaceX rhetoric, McLaughlin likened OneWeb’s satellites to “Ford Focus” cars and attempted to lambast Starlink satellites by comparing them to “Teslas: They launch them and then they have to upgrade and fix them, or even replace them altogether.”
Over the past 17 months, SpaceX has launched more than 1380 operational Starlink v1.0 satellites, some 870 of which are operational. Another ~440 are in the process of reaching operational orbits. All told, some 1365 are still in orbit and around 1345 of those satellites are working as expected for a total Starlink v1.0 failure rate of roughly 2.5%. As is SpaceX’s bread and butter, however, reliability has been continuously improving and of ~960 Starlink satellites launched over the last ~12 months, the overall failure rate has dropped to less than 1% – an almost threefold improvement.
After exiting bankruptcy last November, OneWeb has completed just two more launches for a total of 140 operational satellites in orbit of a planned ~650. Operating at a much higher ~1200 km (~750 mi) orbit, any failure of OneWeb satellites would produce debris that could remain in orbit for decades, whereas SpaceX has explicitly chosen much lower ~550 km (~340 mi) orbits, meaning that debris reenters in a matter of years. At Starlink’s sub-300-kilometer (~185 mi) insertion orbit, any faulty satellites screened during SpaceX’s checkout process reenter in a matter of days or weeks thanks to drag from Earth’s atmosphere.
The first phase of SpaceX’s Starlink constellation will require approximately 4400 satellites in low Earth orbit (LEO) and the company is already almost a third of the way to that milestone. A second phase could see those numbers grow as high as ~12,000, followed by a third phase with more than 40,000 satellites much further down the road. Relative to OneWeb, Starlink is dramatically more ambitious and each SpaceX satellite offers superior bandwidth and latency in a bid to blanket the Earth in affordable, high-quality broadband internet.
Of course, as a consequence of needing so many satellites to build out a network with enough bandwidth to serve tens to hundreds of millions of people, there is an obvious risk that unreliable satellites could make LEO a much more challenging place to operate for both SpaceX and the rest of the world. It also demands an entirely new approach to collision avoidance given the impracticality of human operators manually managing a fleet of thousands – or tens of thousands – of satellites.
Towards that end, SpaceX is developing an autonomous collision avoidance system – though virtually nothing is known about that system outside of the company, creating a far from optimal situation for all other satellite operators. Nevertheless, aside from one publicized avoidance maneuver in 2019, SpaceX appears to be quickly becoming a responsible and (mostly) transparent operator and custodian.
In an apparent attempt to capitalize on vague fears of “space debris” and satellite collisions, OneWeb – or perhaps just McLaughlin – took it upon itself to consciously misconstrue a routine, professional process of collision-avoidance coordination between OneWeb and SpaceX. McLaughlin ran a gauntlet of media outlets to drag SpaceX through the mud and criticize both the company’s technology and response, ultimately claiming that SpaceX’s Starlink satellite was incapable of maneuvering out of the way.
Instead, according to a precise, evidenced timeline of events presented by SpaceX to the FCC, the coordination was routine, uneventful, and entirely successful. OneWeb itself explicitly asked SpaceX to disable its autonomous collision avoidance software and allow the company to maneuver its own satellite out of the way after SpaceX made it clear that the Starlink spacecraft could also manage the task. The event was neither “urgent” or a “close call,” as OneWeb and media outlets later claimed. SpaceX says it has been coordinating similar avoidance maneuvers with OneWeb since March 2020.
Most damningly, SpaceX says that immediately after OneWeb disseminated misleading quotes about the event to the media, “OneWeb met with [FCC] staff and Commissioners [to demand that] unilateral conditions [be] placed on SpaceX’s operations.” Those conditions could have actually made coordination harder, “demonstrating more of a concern with limiting [OneWeb’s] competitors than with a genuine concern for space safety.” Crucially, despite lobbying to restrict its competitors, “OneWeb [has] argued forcefully that [it] should be exempt from Commission rules for orbital debris mitigation due to their status as non-U.S. operators.”
In simple terms, OneWeb is trying to exploit the FCC to suppress its competition while letting it roam free of the exact same regulations. Meanwhile, SpaceX is focused on launching satellites and serving tens of thousands of beta customers as Starlink speeds towards virtually uninterrupted global coverage barely a year and a half after operational launches began – all while coordinating with dozens of other satellite operators to be the best ‘neighbor’ it can be in space.
Elon Musk
SpaceX’s Starship program is already bouncing back from Booster 18 fiasco
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
SpaceX is already bouncing back from the fiasco that it experienced during Starship Booster 18’s initial tests earlier this month.
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
Starship V3 Booster 19 is rising
As per Starbase watchers on X, SpaceX rolled out the fourth aft section of Booster 19 to Starbase’s MegaBay this weekend, stacking it to reach 15 rings tall with just a few sections remaining. This marks the fastest booster assembly to date at four sections in five days. This is quite impressive, and it bodes well for SpaceX’s Starship V3 program, which is expected to be a notable step up from the V2 program, which was retired after a flawless Flight 11.
Starship watcher TankWatchers noted the tempo on X, stating, “During the night the A4 section of Booster 19 rolled out to the MegaBay. With 4 sections in just 5 days, this is shaping up to be the fastest booster stack ever.” Fellow Starbase watcher TestFlight echoed the same sentiments. “Booster 19 is now 15 rings tall, with 3 aft sections remaining!” the space enthusiast wrote.
Aggressive targets despite Booster 18 fiasco
SpaceX’s V3 program encountered a speed bump earlier this month when Booster 18, just one day after rolling out into the factory, experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. While no propellant was loaded, no engines were installed, and no one was injured in the incident, the unexpected end of Booster 18 sparked speculation that the Starship V3 program could face delays.
Despite the Booster 18 fiasco, however, SpaceX announced that “Starship’s twelfth flight test remains targeted for the first quarter of 2026.” Elon Musk shared a similar timeline on X earlier this year, with the CEO stating that “ V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”
Considering that Booster 19 seems to be moving through its production phases quickly, perhaps SpaceX’s Q1 2026 target for Flight 12 might indeed be more than feasible.
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
