News
SpaceX sends Starlink satellites, Boeing demonstrator into orbit on 40th launch of 2022
SpaceX has completed its 40th Falcon 9 launch of 2022, delivering a new batch of Starlink satellites and Boeing demonstration satellite into orbit.
Right on schedule, Falcon 9 lifted off from SpaceX’s Cape Canaveral Space Force Station (CCSFS) LC-40 pad at 10:09 pm EDT, Sunday, September 4th. The rocket’s reused booster and fairing and new upper stage performed as expected, continuing Falcon 9’s unprecedented streak of 149 successful launches. Flying for the seventh time overall, former Falcon Heavy booster B1052 performed flawlessly after a quick 31-day turnaround and touched down on SpaceX drone ship Just Read The Instructions’ (JRTI) deck several hundred miles downrange less than nine minutes after liftoff.
Flying for the fourth and fifth times, the Starlink 4-20 mission’s Falcon 9 fairing halves also worked as expected on ascent. SpaceX does not discuss fairing recovery but both halves likely deployed parafoils after reenter Earth’s atmosphere and gently splashed down in the Atlantic Ocean. SpaceX support ship Doug will eventually fish them out of the water for reuse.
Not merely a Starlink mission, Starlink 4-20 was SpaceX’s sixth Starlink rideshare. Sitting atop the stack of 51 Starlink V1.5 satellites was an experimental spacecraft built by Spaceflight Inc. Known as Sherpa-LTC2, Spaceflight and partner Astro Digital turned the orbital transfer vehicle (space tug) into a satellite for customer Boeing. The purpose: carry and test a prototype communications payload built by Astro Digital and designed to verify new V-band communications technologies for a planned constellation of Boeing satellites in Low Earth Orbit (LEO).
The US Federal Communications Commission (FCC) approved Boeing’s plans for a 147-satellite V-band constellation in November 2021. It’s unclear what the purpose of the constellation would be or if Boeing already has customers or partners lined up. The prototype spacecraft built by Spaceflight and Astro Digital – known as Varuna in recent FCC filings – will be crucial for determining the constellation’s future. Boeing wants to use a swath of spectrum known as the V-band that has a higher frequency than the Ku and Ka bands commonly used by most other communications satellites. A higher frequency could mean higher connection speeds and more available bandwidth, but V-band radio waves tend to struggle to pierce through rain and other adverse weather conditions.
Varuna should help Boeing fully determine whether that interference is a showstopper or something that can be managed. Boeing applied for an FCC license for its V-band constellation in 2017. It’s unclear whether a lack of interest on Boeing’s part or problems with the application caused the process to take as long as it did.
Varuna was successfully deployed from Falcon 9 a bit less than 50 minutes later in a mostly circular orbit 316 kilometers (196 mi) above Earth’s surface. Outfitted with a propulsion system designed by startup Benchmark Space, Sherpa-LTC2 is meant to eventually raise itself into an operational orbit around 1050 kilometers (~650 mi), where the V-band payload can be tested at the same altitude as Boeing’s planned constellation.

20 minutes after Varuna’s deployment, Falcon 9’s upper stage – spinning end over end – released all 51 Starlink satellites at once, completing the payload portion of the mission. As always, the upper stage will likely perform a deorbit burn within a few hours of liftoff and should reenter Earth’s atmosphere not long after, ensuring that the only space debris produced by the mission is the Varuna deployment mechanism and a set of four benign Starlink ‘tensioning rods’ that should reenter in about two months.
Starlink 4-20 was SpaceX’s 40th launch of 2022 and 50th launch in 12 months. According to Next Spaceflight, the company has plans for at least two more Starlink launches within the next eight days. Starlink 4-2, another rideshare mission, is scheduled no earlier than September 10th, while Starlink 4-34 could launch on September 12th.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
