

News
SpaceX’s Starlink satellites “happy and healthy” as Elon Musk fires managers and VP
Reuters is reporting that SpaceX’s Starlink internet satellite constellation project experienced significant organizational upheaval earlier this year, triggered by fundamental disagreements between CEO Elon Musk and executives overseeing Starlink as to how exactly SpaceX should approach the complex system’s development.
Despite the report’s primary focus on reorganization and Musk’s decision to simply fire 5+ key executives, SpaceX employees that spoke with Reuters were of the opinion that the two demo satellites – named Tintin A and B – are operating nominally in orbit more than half a year after launch.
The 2 test sats launched in Feb, Tintin A and B, seem to be healthy. "We’re talking with them every time they pass a ground station, dozens of times a day," one employee said. In the first week they streamed "4k YouTube and played ‘Counter-Strike: GO’ from Hawthorne to Redmond."
— Joey Roulette (@joroulette) October 31, 2018
Musk apparently believed that Starlink’s development timeline ought to be far shorter than certain senior executives overseeing the program were planning for. As a result of continuing success with the first two prototype satellites that launched in March 2018, a SpaceX engineer paraphrased Musk as being of the opinion that Starlink “can do the job with cheaper and simpler satellites, sooner.”
Rajeev Badyal, Vice President of SpaceX’s satellite program before being fired by Musk in June 2018, apparently wanted another three full iterations of prototype satellites to be launched and tested prior to beginning serious mass-production and launching the first real batch of Starlink satellites. While his extremely cautious approach may have had undeniable long-term benefits, it would also be a major hindrance in a field now rife with competitors like Telesat, OneWeb, LeoSat, and more, all eager to be first to offer internet services from low Earth orbit (LEO).
- SpaceX’s first two Starlink prototype satellites are pictured here before their inaugural launch, showing off a thoroughly utilitarian bus and several advanced components. (SpaceX)
- One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage, February 2018. (SpaceX)
Prior to joining SpaceX in 2014, Badyal – like dozens of others now working on SpaceX’s Starlink constellation – worked at Microsoft for almost two decades, developing the consumer electronics and software company’s hardware programs (Zune, Xbox, Surface, etc.). In retrospect, it may not come as a huge surprise that a senior hardware development manager at Microsoft might be moderately risk-averse or at least methodical – while Surface and other more modern hardware programs have more functional iterative life cycles (usually annual), Xbox infamously spent nearly seven years between the launch of the Xbox 360 and Xbox One.
On the ground hardware side of Starlink development, user terminals, ground terminals, and other high-volume networking equipment could certainly benefit from someone like Badyal’s extensive experience developing high-volume consumer electronics like Xbox, but the Starlink satellites themselves are a different story. As a technology essentially without precedent, it could ultimately be almost anachronistically expensive to ‘refine’ the design of constellations of hundreds or thousands of high-bandwidth internet satellites before ever actually building and operating such a system.
A clash of approaches – Musk vs. Silicon Valley
What Musk instead seems to prefer – as demonstrated through his strategic direction of Tesla and SpaceX – is an approach where hardware development projects explicitly avoid striving for perfection with the first general iteration of a new system. Tesla did not spend years prototyping and performing limited tests in secret before building Model 3 as their first car ever – high-volume desirable electric vehicles simply did not exist. With SpaceX, Musk chose to explicitly develop a very small operational rocket – Falcon 1 – rather than very tediously attempting to go from scratch to Falcon 9 or BFR.
For Starlink, a Musk-style development program would fast-track a bare-minimum baseline for the satellite constellation and its ground systems, mass-producing and launching hardware that would inevitably be lacking in many ways but would still be able to act as a proving ground for the broader concepts at stake. One step further, the FCC’s Starlink constellation grant depends on an odd but unwavering requirement that SpaceX (or any other prospective LEO constellation-operator) launch at least 50% of all of any planned constellation within six years of receiving a license.
- SpaceX’s first Starlink prototypes launched in late February aboard a flight-proven Falcon 9 booster. (Pauline Acalin)
- Falcon 9 Block 5 will be absolutely critical to the success (and even the basic completion) of Starlink. (Tom Cross)
- B1048 returns to port on drone ship JRTI after its successful July 2019 launch debut. (Pauline Acalin)
For SpaceX, that means that the basic ability to commercially operate Starlink is fundamentally at risk unless the company can somehow launch a minimum of 2213 (and up to ~5950) Starlink satellites between 2018 and 2024, an almost unfathomable challenge. Assuming ~500kg per satellite and perhaps 20 satellites per Falcon 9 launch, completing 50% of Starlink by 2024 would demand – without interruption – a minimum of one launch every two weeks for five years, mid-2019 to mid-2024. As such, every month spent prototyping and refining can essentially be viewed as a month where SpaceX didn’t launch dozens of Starlink satellites in pursuit of initial operational capabilities.
The news coming from Reuters’ reporting is ultimately a very positive look at Starlink, aside from Musk’s characteristically brusque and uncompromising approach to program management and leadership. Employees spoke proudly of the operational health and overall success of the two Tintin satellites already on orbit, noting that “they’re happy and healthy [and functioning as intended], and we’re talking with them [dozens of times a day] every time they pass a ground station”. Contrary to tenuous evidence to that suggested one of the two satellites had suffered an anomaly, preventing it from operating its electric thrusters, it appears that both satellites are doing just fine.
- SpaceX is already fairly experienced with launching multi-satellite missions and building custom payload adapters. (NASA)
- During a normal Iridium NEXT launch, two groups of five satellites are stacked on top of each other. Here, the top stack was replaced by NASA/DLR’s GRACE-FO spacecraft. (NASA)
- A spectacular view of Iridium NEXT satellites during orbital deployment. Starlink deployment will be even more of a spectacle. (SpaceX)
Up next for Starlink is the launch of a second batch of demonstration satellites, expected to occur “in short order” according to an official SpaceX comment on the matter.
“Given the success of our recent Starlink demonstration satellites, we have incorporated lessons learned and re-organized to allow for the next design iteration to be flown in short order.” – SpaceX spokesperson Eva Behrend
Musk’s ultimate hope with this reorganization is to push Starlink to begin operational satellite launches as early as mid-2019, an ambitious goal to say the least. Understandably, the intent with such an expedited schedule would be to continuously modify, update, and improve Starlink satellite, terminal, and network designs at the same time as they are being built and operated. Much like SpaceX and Tesla, this helps to ensure that the ultimate result of development is a rapid initial product offering eventually followed by a highly-optimized ‘finished’ product.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Elon Musk calls out viral claim of 10,000 Tesla Optimus deal: “Fake”
For now at least, Tesla seems determined to focus on the development of Optimus V3.

Elon Musk has provided some clarification to recent reports suggesting that PharmAGRI, a US pharmaceutical and agricultural infrastructure company, is looking to deploy 10,000 Optimus robots for its operations.
Musk posted his clarification on social media platform X.
Alleged Optimus purchase
Recently, reports emerged stating that PharmAGRI Capital Partners will be tapping into Tesla’s humanoid robots for its operations. The firm claimed that it had executed a Letter of Intent with Tesla to deploy up to 10,000 Optimus Gen 3+ humanoid robots across its SuperPharm and CEA facilities. This should allow the company to automate its labor and ensure diversion control.
A comment from Lynn Stockwell, Chairwoman & CEO, suggested that the company really was partnering with Tesla. “With Tesla robotics powering our facilities and DEA-licensed infrastructure in place, we can scale with precision, meet federal sourcing mandates, and deliver therapies that are compliant, secure, and American-made,” she said.
Elon Musk clariies
News of PharmAGRI’s Optimus claims quickly spread on social media, though some Tesla watchers argued that it seemed unlikely that the EV maker will commit two legions of Optimus robots to a rather unknown company this early. Some pointed out that Tesla typically commits to high-profile customers to test its early products, such as PepsiCo with the Tesla Semi.
Photos from PharmAGRI’s website depicting Tesla Optimus bots, as well as the rather basic look of the website itself, also brought more reservations to the company’s claims. Ultimately, Elon Musk weighed in on the matter, responding to a post about PharmAGRI’s Optimus-filled webpage. Musk was quick and direct, simply stating, “Fake.”
Elon Musk’s comments were quite unsurprising considering that Optimus is still very much in active development, and thus, it is quite unlikely that the company is already taking orders or even Letters of Intent from potential customers at this time. For now at least, Tesla seems determined to focus on the development of Optimus V3, which Musk has noted will be “sublime.”
Elon Musk
Elon Musk: Self-sustaining city on Mars is plausible in 25-30 years
Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization.”

Elon Musk has stated that a self-sustaining human settlement on Mars could be established in 25-30 years, provided launch capacity increases dramatically in the coming decades.
Speaking at the All-In Summit, the SpaceX CEO said building a self-sufficient colony depends on exponential growth in “tonnage to Mars” with each launch window, highlighting Starship’s role as the company’s pathway to interplanetary initiatives.
Mars settlement goals
Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization,” from food production to microchip manufacturing. Starship Version 3 is expected to support the first uncrewed Mars test flights, while future iterations could reach 466 feet in height and deliver larger payloads critical for settlement. Ultimately, Musk stated that an aggressive timeline for a city on Mars could be as short as 30 years, as noted in a Space.com report.
“I think it can be done in 30 years, provided there’s an exponential increase in the tonnage to Mars with each successive Mars transfer window, which is every two years. Every two years, the planets align and you can transfer to Mars.
“I think in roughly 15, but maybe as few as 10, but 10-15-ish Mars transfer windows. If you’re seeing exponential increases in the tonnage to Mars with each Mars transfer window, then it should be possible to make Mars self-sustaining in about call it roughly 25 years,” Musk said.
Starship’s role
Starship has flown in a fully stacked configuration ten times, most recently in August when it completed its first payload deployment in orbit. The next flight will close out the Version 2 program before transitioning to Starship Version 3, featuring Raptor 3 engines and a redesigned structure capable of lifting over 100 tons to orbit.
While SpaceX has demonstrated Super Heavy booster reuse, Ship reusability remains in development. Musk noted that the heat shield is still the biggest technical hurdle, as no orbital vehicle has yet achieved rapid, full reuse.
“For full reusability of the Ship, there’s still a lot of work that remains on the heat shield. No one’s ever made a fully reusable orbital heat shield. The shuttle heat shield had to go through nine months of repair after every flight,” he said.
News
Tesla Model Y may gain an extra 90 miles of range with Panasonic’s next-gen battery
The Japanese company is pursuing an anode-free design.

Panasonic is developing a new high-capacity EV battery that could potentially extend the range of a Tesla Model Y by 90 miles.
The Japanese company, one of Tesla’s key battery suppliers, is pursuing an anode-free design that it says could deliver a “world-leading” level of capacity by the end of 2027.
Panasonic’s anode-free design
The technology Panasonic is pursuing would eliminate the anode during the manufacturing process, as noted in a Reuters report. By freeing up space for more active cathode materials such as nickel, cobalt, and aluminum, the Japanese company expects a 25% increase in capacity without expanding battery size.
That could allow Tesla’s Model Y to gain an estimated 145 kilometers (90 miles) of additional range if equipped with a battery that matches its current pack’s size. At the same time, Panasonic could use smaller, lighter batteries to achieve the Model Y’s current range.
Panasonic also aims to reduce reliance on nickel, which remains one of the more costly raw materials. A senior executive previewed the initiative to reporters ahead of a scheduled presentation by Panasonic Energy’s technology chief, Shoichiro Watanabe.
Tesla implications
The breakthrough, if achieved, could strengthen Panasonic’s position as Tesla’s longest-standing battery partner at a time when the automaker is preparing to enter an era of extreme scale driven by high-volume products like the Cybercab and Optimus.
Elon Musk has stated that products like Optimus would be manufactured at very high scale, so it would likely be an all-hands-on-deck situation for the company’s suppliers.
Panasonic did not share details on production costs or how quickly the new batteries might scale for commercial applications. That being said, the Japanese supplier has long been a partner of Tesla, so it makes sense for the company to also push for the next generation of battery innovation while the EV maker pursues even more lofty ambitions.
-
Elon Musk2 weeks ago
Tesla’s next-gen Optimus prototype with Grok revealed
-
News2 weeks ago
Tesla launches new Supercharger program that business owners will love
-
Elon Musk2 weeks ago
Tesla Board takes firm stance on Elon Musk’s political involvement in pay package proxy
-
News2 weeks ago
Tesla deploys Unsupervised FSD in Europe for the first time—with a twist
-
News2 weeks ago
Tesla explains why Robotaxis now have safety monitors in the driver’s seat
-
News2 weeks ago
Tesla is already giving Robotaxi privileges hours after opening public app
-
Elon Musk2 weeks ago
Elon Musk says Tesla will take Safety Drivers out of Robotaxi: here’s when
-
Elon Musk2 weeks ago
Elon Musk is setting high expectations for Tesla AI5 and AI6 chips