At the same time as SpaceX is assembling hardware and manufacturing dozens of Raptor engines for Starship’s inaugural orbital test flight, it’s also preparing for what will follow.
Last week, a local photographer captured photos of one of the many dozens of deliveries that arrive at SpaceX’s Boca Chica Starship factory every month – notable this time around because of package labels that reference a “heat shield” and “mini bakery.” In any other case, it would’ve been just another nondescript delivery – likely carrying the latest batch of the ceramic Starship heat shield tiles SpaceX currently manufactures in Cocoa Beach and Cape Canaveral, Florida.
However, as the photographer (@StarshipGazer) that captured the images noted, that Florida Starship heat shield factory just so happens to be colloquially known as “The Bakery” by the SpaceX team that runs it.
As the nickname would suggest, The Bakery is one of two main Florida-based facilities tasked with turning raw materials into the black, hexagonal heat shield tiles that have begun to spread across the exterior of Starship prototypes. The June 7th delivery of a “mini bakery” strongly implies that SpaceX has now begun to build out some limited capacity for heat shield tile production at Boca Chica itself – under the main Starship factory roof, in other words.
While the number of tiles present has only really begun to grow in the last six or so months, SpaceX has been building, testing, and refining Starship’s heat shield technology for more than two years. SpaceX’s custom-built ceramic tiles made their first public appearances in July and August 2019, first launching into orbit on a Cargo Dragon spacecraft and later tagging along on Starhopper’s spectacular 150m (~500 ft) hop a few weeks later. Dragon went on to reenter and splash down in the Pacific Ocean without issue about a month later, effectively marking the first successful orbital reentry of (part of) a Starship heat shield.
With Starship SN8 heralding the arrival of full-size prototype flight tests in the last few months of 2020, SpaceX began to substantially increase the number of tiles installed on Starships, jumping from a handful to hundreds within a few months. Although Starship SN15’s successful May 5th, 2021 launch and landing likely means it will never fly, Starship SN16 was outfitted with more than a thousand tiles (and SN15 flew with almost as many). While those tiles have essentially zero experience acting as a heat shield on Starship prototypes, launching them on suborbital test flights still subjects those heat shield installations to major thermal and mechanical stresses similar to (or worse than) what Starship will need to withstand during launch and after reentry.
Given that at least a few of the ceramic tiles installed on each prototype have invariably shattered at some point during testing, it’s unclear exactly how successful those coupon tests have been. Unlike the Space Shuttle, which also relied almost exclusively on catastrophically fragile ceramic heat shield tiles, Starship’s tiles are mounted directly to its hull and that hull is made out of steel instead of an aluminum frame. In theory, Starship’s structure can thus withstand – and remain functional – at temperatures approaching 800°C (1500°F), whereas the Shuttle’s heat shield had to keep the vehicle’s aluminum structure below ~180°C (360°F).
Of course, Starship has yet to even attempt to survive an orbital-velocity reentry with some 10,000 ceramic heat shield tiles mounted directly to its steel skin. If successful, SpaceX’s ultra-simple design could give Starship massive advantages over the Shuttle, which ultimately proved to be more dangerous than traditional crew capsules and about as expensive as a similarly capable expendable rocket. But Starship’s heat shield has its work cut out for it to prove that the vast spacecraft is truly up to the challenge of orbital reentry and safe, reliable reuse.
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.