At the same time as SpaceX is assembling hardware and manufacturing dozens of Raptor engines for Starship’s inaugural orbital test flight, it’s also preparing for what will follow.
Last week, a local photographer captured photos of one of the many dozens of deliveries that arrive at SpaceX’s Boca Chica Starship factory every month – notable this time around because of package labels that reference a “heat shield” and “mini bakery.” In any other case, it would’ve been just another nondescript delivery – likely carrying the latest batch of the ceramic Starship heat shield tiles SpaceX currently manufactures in Cocoa Beach and Cape Canaveral, Florida.
However, as the photographer (@StarshipGazer) that captured the images noted, that Florida Starship heat shield factory just so happens to be colloquially known as “The Bakery” by the SpaceX team that runs it.
As the nickname would suggest, The Bakery is one of two main Florida-based facilities tasked with turning raw materials into the black, hexagonal heat shield tiles that have begun to spread across the exterior of Starship prototypes. The June 7th delivery of a “mini bakery” strongly implies that SpaceX has now begun to build out some limited capacity for heat shield tile production at Boca Chica itself – under the main Starship factory roof, in other words.
While the number of tiles present has only really begun to grow in the last six or so months, SpaceX has been building, testing, and refining Starship’s heat shield technology for more than two years. SpaceX’s custom-built ceramic tiles made their first public appearances in July and August 2019, first launching into orbit on a Cargo Dragon spacecraft and later tagging along on Starhopper’s spectacular 150m (~500 ft) hop a few weeks later. Dragon went on to reenter and splash down in the Pacific Ocean without issue about a month later, effectively marking the first successful orbital reentry of (part of) a Starship heat shield.
With Starship SN8 heralding the arrival of full-size prototype flight tests in the last few months of 2020, SpaceX began to substantially increase the number of tiles installed on Starships, jumping from a handful to hundreds within a few months. Although Starship SN15’s successful May 5th, 2021 launch and landing likely means it will never fly, Starship SN16 was outfitted with more than a thousand tiles (and SN15 flew with almost as many). While those tiles have essentially zero experience acting as a heat shield on Starship prototypes, launching them on suborbital test flights still subjects those heat shield installations to major thermal and mechanical stresses similar to (or worse than) what Starship will need to withstand during launch and after reentry.
Given that at least a few of the ceramic tiles installed on each prototype have invariably shattered at some point during testing, it’s unclear exactly how successful those coupon tests have been. Unlike the Space Shuttle, which also relied almost exclusively on catastrophically fragile ceramic heat shield tiles, Starship’s tiles are mounted directly to its hull and that hull is made out of steel instead of an aluminum frame. In theory, Starship’s structure can thus withstand – and remain functional – at temperatures approaching 800°C (1500°F), whereas the Shuttle’s heat shield had to keep the vehicle’s aluminum structure below ~180°C (360°F).
Of course, Starship has yet to even attempt to survive an orbital-velocity reentry with some 10,000 ceramic heat shield tiles mounted directly to its steel skin. If successful, SpaceX’s ultra-simple design could give Starship massive advantages over the Shuttle, which ultimately proved to be more dangerous than traditional crew capsules and about as expensive as a similarly capable expendable rocket. But Starship’s heat shield has its work cut out for it to prove that the vast spacecraft is truly up to the challenge of orbital reentry and safe, reliable reuse.
Elon Musk
Starlink restrictions are hitting Russian battlefield comms: report
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network.
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.
Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.
A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.
The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.
The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted.
Elon Musk
Tesla Korea hiring AI Chip Engineers amid push for high-volume AI chips
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
In a recent post on X, Tesla Korea announced that it is hiring AI Chip Design Engineers as part of a project aimed at developing what the company describes as the world’s highest-volume AI chips. CEO Elon Musk later amplified the initiative.
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
“This project aims to develop AI chip architecture that will achieve the highest production volume in the world in the future,” Tesla Korea wrote in its post on X.
As per Tesla Korea, those who wish to apply for the AI Chip Design Engineer post should email Ai_Chips@Tesla.com and include “the three most challenging technical problems you have solved.”
Elon Musk echoed the hiring push in a separate post. “If you’re in Korea and want to work on chip design, fabrication or AI software, join Tesla!” he wrote.
The recruitment effort in South Korea comes as Tesla accelerates development of its in-house AI chips, which power its Full Self-Driving (FSD) system, Optimus humanoid robot, and data center training infrastructure.
Tesla has been steadily expanding its silicon development teams globally. In recent months, the company has posted roles in Austin and Palo Alto for silicon module process engineers across lithography, etching, and other chip fabrication disciplines, as noted in a Benzinga report.
Tesla Korea’s hiring efforts align with the company’s long-term goal of designing and producing AI chips at massive scale. Musk has previously stated that Tesla’s future AI chips could become the highest-volume AI processors in the world.
The move also comes amid Tesla’s broader expansion into AI initiatives. The company recently committed about $2 billion into xAI as part of a Series E funding round, reinforcing its focus on artificial intelligence across vehicles, robotics, and compute infrastructure.
Elon Musk
SpaceX and xAI tapped by Pentagon for autonomous drone contest
The six-month competition was launched in January and is said to carry a $100 million award.
SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News.
The six-month competition was launched in January and is said to carry a $100 million award.
Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.
Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.
The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.
The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.
The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.
Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.