SpaceX CEO Elon Musk says that the company could eventually develop an expendable version of its next-generation Starship rocket.
Starship is extraordinarily ambitious. Even before considering the unproven concepts of orbital propellant refilling and full, rapid reusability that are central to the full system, Starship is a beast. The rocket measures 120 meters (~390 ft) tall and is theoretically capable of producing up to 7590 tons (~16.7M lbf) of thrust at sea level. It’s larger, taller, heavier, and more powerful than any other launch vehicle in history. 33 Raptor 2 engines power Starship’s Super Heavy booster – also more than any other rocket.
Once optimized, SpaceX says that Starship can launch up to 150 tons (330,000 lbs) to low Earth orbit while still recovering the orbital ship and suborbital booster for reuse. CEO Elon Musk has stated that Starship reuse will eventually take hours, enabling multiple flights per day for each ship and booster and dropping the marginal cost of each launch to just a few million dollars.
In comparison, SpaceX’s workhorse Falcon 9 rocket uses simpler Merlin 1D engines, has just 10 of those engines to Starship’s 39 Raptors, produces about 10 times less thrust at liftoff, and can launch about 11% as much payload to orbit while expending its upper stage. Even then, Musk reported in mid-2020 that the marginal cost of a Falcon 9 launch was $15 million – impressively low but still a vivid demonstration of just how far Starship has to go.

The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Simply ensuring that Starship can reach orbit at all is a major challenge. Successfully recovering Starship and Super Heavy after the fact may be an even bigger challenge and cannot be fully demonstrated until the rocket can consistently reach orbit. SpaceX won’t be able to reuse Starship until it can consistently recover ships and boosters from orbital launches. And there’s no guarantee that early prototypes will be reusable even if they’re recovered.
Until reusability is demonstrated, every “Starship upper stage” will be functionally expendable whether or not Elon Musk wants it to be. Musk likely means that SpaceX may or may not decide to develop a Starship upper stage custom-built for expendable missions. Such a stage would likely take Starship, remove everything extraneous, and reduce its mass as much as possible. Musk has proposed something similar before, noting that SpaceX could develop a “lightened” version of Starship “with no heat shield or fins/legs” for expendable, interplanetary launches.

Further to the contrary, SpaceX’s Starbase factory is already building multiple intentionally-expendable Starships. Ship 26 and Ship 27 feature no thermal protection, have no heat shield tiles, and will not be fitted with flaps, making them impossible to recover or reuse. More likely than not, they will be used to test other crucial Starship technologies like orbital refilling and cryogenic fluid management.
Meanwhile, SpaceX’s multibillion-dollar contract to use Starship to return NASA astronauts to the Moon revolves around a depot ship variant that will store propellant in orbit and cannot return to Earth. The first few Starship Moon landers may also be functionally expendable and only used for one astronaut landing apiece. In short, SpaceX already has extensive plans to build variants of Starship that are either fully expendable or can only be reused in orbit.

Single-use Starships
In early 2023, SpaceX updated the Starship section of its website, revealing that an expendable version of the rocket will be able to launch up to 250 metric tons (~550,000 lbs) to low Earth orbit in a single launch. Saturn V, the next most capable expendable rocket, could launch up to 118 tons (~260,000 lbs) to LEO and cost $1-2 billion per launch. SpaceX publicly advertising the expendable performance of Starship unsurprisingly confirms that the company is considering all of the capabilities its new launch system will offer.
And Starship’s expendable capabilities are significant. Constructed piece by piece over dozens of launches, the International Space Station weighs about 420 tons (~925,000 lbs). Two expendable Starships could launch more usable mass to LEO – truly revolutionary if SpaceX can make Starship launches frequent and routine.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.