SpaceX CEO Elon Musk says that the company could eventually develop an expendable version of its next-generation Starship rocket.
Starship is extraordinarily ambitious. Even before considering the unproven concepts of orbital propellant refilling and full, rapid reusability that are central to the full system, Starship is a beast. The rocket measures 120 meters (~390 ft) tall and is theoretically capable of producing up to 7590 tons (~16.7M lbf) of thrust at sea level. It’s larger, taller, heavier, and more powerful than any other launch vehicle in history. 33 Raptor 2 engines power Starship’s Super Heavy booster – also more than any other rocket.
Once optimized, SpaceX says that Starship can launch up to 150 tons (330,000 lbs) to low Earth orbit while still recovering the orbital ship and suborbital booster for reuse. CEO Elon Musk has stated that Starship reuse will eventually take hours, enabling multiple flights per day for each ship and booster and dropping the marginal cost of each launch to just a few million dollars.
In comparison, SpaceX’s workhorse Falcon 9 rocket uses simpler Merlin 1D engines, has just 10 of those engines to Starship’s 39 Raptors, produces about 10 times less thrust at liftoff, and can launch about 11% as much payload to orbit while expending its upper stage. Even then, Musk reported in mid-2020 that the marginal cost of a Falcon 9 launch was $15 million – impressively low but still a vivid demonstration of just how far Starship has to go.

The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Simply ensuring that Starship can reach orbit at all is a major challenge. Successfully recovering Starship and Super Heavy after the fact may be an even bigger challenge and cannot be fully demonstrated until the rocket can consistently reach orbit. SpaceX won’t be able to reuse Starship until it can consistently recover ships and boosters from orbital launches. And there’s no guarantee that early prototypes will be reusable even if they’re recovered.
Until reusability is demonstrated, every “Starship upper stage” will be functionally expendable whether or not Elon Musk wants it to be. Musk likely means that SpaceX may or may not decide to develop a Starship upper stage custom-built for expendable missions. Such a stage would likely take Starship, remove everything extraneous, and reduce its mass as much as possible. Musk has proposed something similar before, noting that SpaceX could develop a “lightened” version of Starship “with no heat shield or fins/legs” for expendable, interplanetary launches.

Further to the contrary, SpaceX’s Starbase factory is already building multiple intentionally-expendable Starships. Ship 26 and Ship 27 feature no thermal protection, have no heat shield tiles, and will not be fitted with flaps, making them impossible to recover or reuse. More likely than not, they will be used to test other crucial Starship technologies like orbital refilling and cryogenic fluid management.
Meanwhile, SpaceX’s multibillion-dollar contract to use Starship to return NASA astronauts to the Moon revolves around a depot ship variant that will store propellant in orbit and cannot return to Earth. The first few Starship Moon landers may also be functionally expendable and only used for one astronaut landing apiece. In short, SpaceX already has extensive plans to build variants of Starship that are either fully expendable or can only be reused in orbit.

Single-use Starships
In early 2023, SpaceX updated the Starship section of its website, revealing that an expendable version of the rocket will be able to launch up to 250 metric tons (~550,000 lbs) to low Earth orbit in a single launch. Saturn V, the next most capable expendable rocket, could launch up to 118 tons (~260,000 lbs) to LEO and cost $1-2 billion per launch. SpaceX publicly advertising the expendable performance of Starship unsurprisingly confirms that the company is considering all of the capabilities its new launch system will offer.
And Starship’s expendable capabilities are significant. Constructed piece by piece over dozens of launches, the International Space Station weighs about 420 tons (~925,000 lbs). Two expendable Starships could launch more usable mass to LEO – truly revolutionary if SpaceX can make Starship launches frequent and routine.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.