Connect with us

News

SpaceX Starship factory aiming to build five megarockets in 2023

Published

on

CEO Elon Musk says that SpaceX’s South Texas Starship aims to build up to five of the two-stage megarockets in 2023.

SpaceX’s Boca Chica, Texas hardware endeavors began in an empty field in late 2018, kicking off Starhopper testing in 2019. In late 2019 and early 2020, the company began building the bones of the factory that exists today, relying heavily on several giant tents (“sprung structures”) similar to those used by Tesla. SpaceX has already begun the process of replacing those tents with larger, permanent buildings, but two of the original tents continue to host crucial parts of the Starship manufacturing process.

In terms of useful output, that manufacturing slowed down a bit in 2022. That slowdown can likely be partially explained by the need to move equipment and processes into the first finished section of Starfactory. But in general, SpaceX was simply focused on finishing and testing Starship S24 and Super Heavy B7 – both stages of the latest vehicle meant to attempt Starship’s first orbital launch.

Only by late 2022 did Ship 24 more or less complete proof testing, and Booster 7 is still several major tests away from solidifying full confidence in its design. SpaceX has only conducted limited testing with fully-stacked Starships, further reducing the amount of confidence the company can have in the assembled rocket. Lacking the data needed to know with certainty whether the tweaked designs of Starship and Super Heavy are good enough for several orbital test flights, it’s thus unsurprising that SpaceX only produced a handful of usable ships and boosters in 2022.

SpaceX has been testing Ship 24 and Booster 7 for more than half a year. (SpaceX)

But if CEO Elon Musk’s forecast is correct, the company has plans to increase Starbase’s useful output in 2023. According to Musk, SpaceX aims to build “about five full stacks” this year, translating to five flightworthy Starships and five Super Heavy boosters.

Advertisement
-->

In 2022, SpaceX finished Booster 7 and built Booster 8, Booster 9, and most of Booster 10. Booster 8 was almost immediately relegated to the retirement yard. Booster 9, featuring some significant design changes, completed a limited amount of proof testing and returned to the factory in early January – likely for Raptor engine installation. The fate of Booster 10 is unclear, but it stands as a prime example of how fast SpaceX can actually build massive Starship hardware when conditions are right. SpaceX began stacking B10 in late October 2022 and the vehicle is just two stacks away from full height three months later.

Booster 9 returned to the factory in early-January 2023.

In the same period, SpaceX finished and immediately retired Starship S22, finished and began testing Ship 24, finished and began testing Ship 25, and finished stacking Ship 26. Booster 9’s upgrades partially insulate it from the most disappointing possible scenario, retirement before flight. Even if Booster 7 fails during prelaunch testing or its launch attempt, revealing major design flaws, it’s possible that Booster 9’s changes have already addressed those weaknesses, allowing it to continue the flight test campaign. Ship 25’s fate is even more dependent on the fate of Ship 24.

Fitted with Raptor engines, Ship 25 is set to kick off prelaunch testing in early 2023.

In 2022, SpaceX ultimately produced two “full stacks,” with a third (S26/B10) likely to be completed – albeit with a less certain fate – in early 2023. Delivering five full stacks this year – meaning five ships and five boosters that make it far enough to be paired with another and fully stacked – would be a major improvement. However, as was the case in 2022, higher-volume production will remain a risky proposition until the designs of the vehicles being built have been fully qualified.

Given how long it’s taken SpaceX to partially qualify Super Heavy Booster 7, it appears that the largest source of uncertainty will remain for at least another month or two, if not well into mid-2023. Starship production has many uncertainties of its own, and all of them are complicated by not knowing if a Super Heavy booster will be available to launch each new ship in a timely fashion.

S24 and B7 are scheduled to debut no earlier than late February or March 2023. (SpaceX)

Ultimately, an entirely different constraint means that “five full stacks” may be all SpaceX needs to build for the next 12+ months. After a long and painful process, the FAA completed an environmental review of SpaceX’s Starbase, Texas facilities, permitting a maximum of five orbital (full-stack) Starship launches per year. Starship’s FAA orbital launch license, which has yet to be granted, could be even more restrictive. A second Starship pad under construction in Florida is unlikely to be cleared for orbital launches until Starship has proven itself to be moderately safe in South Texas, which could easily take 12-18 months, if not longer.

Combined with the fact that no super-heavy-lift rocket in history has flown five times in its first year of launch activity, a trend Starship seems unlikely to break, SpaceX could practically halt production entirely in 2023 and still have a full year of testing ahead of it while only using Ships 24-26 and Boosters 7, 9, and 10. Unintuitively, that bodes well for a busy 2023 of Starship test flights, as much of the hardware required for three flight tests is already close to completion or almost ready to begin preflight testing.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading