News
SpaceX is about to have a fleet of Starship rockets
SpaceX has finished the last major stacking event for the business half of its fifth full-scale Starship prototype, meaning that the company may be a week or less from having a fleet of Starships for the first time ever.
As of now, Starship serial number 5 (SN5) is on track to be completed in under a month, continuing a trend that SpaceX has managed over the entirety of 2020. Beginning in mid-January, SpaceX has completed several nosecone pathfinders, three test tanks, and three full-scale Starship prototypes – soon to be four once SN5 is finished. Once it is, however, SpaceX will be entering a new era of operations – fleet operations.
Up to this point, every full-scale Starship prototype and test tank SpaceX has built – excluding the tank SN2 was turned into in March – has been quickly destroyed over the course of one or two tests. For better or for worse, this has meant that SpaceX’s test and launch pad has always been more or less self-clearing, making way for the next prototype to roll out and begin testing after the scraps of its predecessor were removed. This time around, barring Starship SN4’s imminent demise, SpaceX will now have to deal with multiple completed Starship prototypes at the same time – a tiny taste of things to come.

For unknown reasons, SpaceX decided to swap out Starship SN4’s lone Raptor engine (likely SN18) after multiple wet dress rehearsals, partial engine tests, and two static fire tests – at least one of which was confirmed a success by CEO Elon Musk. Most recently, SpaceX removed Raptor SN18 to perform a more ambitious cryogenic pressure test, pushing Starship SN4’s propellant tanks all the way to 7.5 bar (~110 psi) at the same time as hydraulic rams simulated the thrust of three Raptor engines at the rocket’s base.
Instead of reinstalling Raptor SN18, SpaceX transported Raptor SN20 to the launch pad and installed it on Starship SN4 on May 10th, less than 24 hours after the prototype passed an orbital-class pressure test.


Aside from installing Raptor SN20, SpaceX teams have spent the last few days adding new COPVs (composite overwrapped pressure vessels) and plumbing to Starship SN4’s exterior – purpose largely unknown. While the new hardware is mostly a mystery, it is known that SpaceX is in the process of preparing SN4 and its new Raptor engine for a third wet dress rehearsal (WDR) and static fire test, necessary to ensure that Raptor SN20 is properly installed and functioning as expected.
Assuming that third static fire is successful, SpaceX’s will prepare Starship SN4 for its first flight, a ~150m (500 ft) hop test that will also be the first intentional flight of any full-scale Starship prototype since the program’s birth. For that hop test, SN4 will need some kind of attitude control system (ACS) thrusters to control its rotation and provide fine trajectory tuning to assist the ship’s lone Raptor engine. This is the likeliest explanation for the new hardware being installed on Starship SN4, as the ship does not currently appear to have ACS thrusters installed.
Starship Troopers
Of course, the first flight of a full-scale Starship prototype will probably be the riskiest test yet for the program and there’s a good chance that SN4 will meet its demise at some point during that flight. Enter Starship SN5.


As of May 12th, Starship SN5’s final two tank sections were stacked, effectively completing the most important half of the rocket (minus one final circumferential ring weld). SN5’s final outfitting of avionics and plumbing is still pending and will take at least a few days to a week or more, but that work can and has been completed after prototypes are transferred by road to the launch pad. Currently, Starship SN4 is occupying SpaceX’s one and only pad test stand, however, meaning that it wouldn’t make much sense to immediately move SN5 to the launch pad – at least until SN4 is done testing.
SN5 will also need a nose section and, perhaps, flaps installed, meaning that the full ship is likely still at least a week or two away from being finished, but that likely wont stop SpaceX from proof testing the rocket’s tanks if or when SN4 makes space at the launch pad.

According to comments made by Elon Musk, SN5 will likely become the first Starship prototype to have three Raptor engines installed and the first to attempt a truly high-altitude flight test if Starship SN4 is met with success in the coming weeks. As absurd as it feels to say, if SN5 completes triple-Raptor testing and a 20 km (~12 mi) flight test without issue, Musk has stated that the next step would be orbital flight tests. Starship SN6’s steel rings, meanwhile, are already being formed and stacked as SN5 nears completion.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.