News
SpaceX is about to have a fleet of Starship rockets
SpaceX has finished the last major stacking event for the business half of its fifth full-scale Starship prototype, meaning that the company may be a week or less from having a fleet of Starships for the first time ever.
As of now, Starship serial number 5 (SN5) is on track to be completed in under a month, continuing a trend that SpaceX has managed over the entirety of 2020. Beginning in mid-January, SpaceX has completed several nosecone pathfinders, three test tanks, and three full-scale Starship prototypes – soon to be four once SN5 is finished. Once it is, however, SpaceX will be entering a new era of operations – fleet operations.
Up to this point, every full-scale Starship prototype and test tank SpaceX has built – excluding the tank SN2 was turned into in March – has been quickly destroyed over the course of one or two tests. For better or for worse, this has meant that SpaceX’s test and launch pad has always been more or less self-clearing, making way for the next prototype to roll out and begin testing after the scraps of its predecessor were removed. This time around, barring Starship SN4’s imminent demise, SpaceX will now have to deal with multiple completed Starship prototypes at the same time – a tiny taste of things to come.

For unknown reasons, SpaceX decided to swap out Starship SN4’s lone Raptor engine (likely SN18) after multiple wet dress rehearsals, partial engine tests, and two static fire tests – at least one of which was confirmed a success by CEO Elon Musk. Most recently, SpaceX removed Raptor SN18 to perform a more ambitious cryogenic pressure test, pushing Starship SN4’s propellant tanks all the way to 7.5 bar (~110 psi) at the same time as hydraulic rams simulated the thrust of three Raptor engines at the rocket’s base.
Instead of reinstalling Raptor SN18, SpaceX transported Raptor SN20 to the launch pad and installed it on Starship SN4 on May 10th, less than 24 hours after the prototype passed an orbital-class pressure test.


Aside from installing Raptor SN20, SpaceX teams have spent the last few days adding new COPVs (composite overwrapped pressure vessels) and plumbing to Starship SN4’s exterior – purpose largely unknown. While the new hardware is mostly a mystery, it is known that SpaceX is in the process of preparing SN4 and its new Raptor engine for a third wet dress rehearsal (WDR) and static fire test, necessary to ensure that Raptor SN20 is properly installed and functioning as expected.
Assuming that third static fire is successful, SpaceX’s will prepare Starship SN4 for its first flight, a ~150m (500 ft) hop test that will also be the first intentional flight of any full-scale Starship prototype since the program’s birth. For that hop test, SN4 will need some kind of attitude control system (ACS) thrusters to control its rotation and provide fine trajectory tuning to assist the ship’s lone Raptor engine. This is the likeliest explanation for the new hardware being installed on Starship SN4, as the ship does not currently appear to have ACS thrusters installed.
Starship Troopers
Of course, the first flight of a full-scale Starship prototype will probably be the riskiest test yet for the program and there’s a good chance that SN4 will meet its demise at some point during that flight. Enter Starship SN5.


As of May 12th, Starship SN5’s final two tank sections were stacked, effectively completing the most important half of the rocket (minus one final circumferential ring weld). SN5’s final outfitting of avionics and plumbing is still pending and will take at least a few days to a week or more, but that work can and has been completed after prototypes are transferred by road to the launch pad. Currently, Starship SN4 is occupying SpaceX’s one and only pad test stand, however, meaning that it wouldn’t make much sense to immediately move SN5 to the launch pad – at least until SN4 is done testing.
SN5 will also need a nose section and, perhaps, flaps installed, meaning that the full ship is likely still at least a week or two away from being finished, but that likely wont stop SpaceX from proof testing the rocket’s tanks if or when SN4 makes space at the launch pad.

According to comments made by Elon Musk, SN5 will likely become the first Starship prototype to have three Raptor engines installed and the first to attempt a truly high-altitude flight test if Starship SN4 is met with success in the coming weeks. As absurd as it feels to say, if SN5 completes triple-Raptor testing and a 20 km (~12 mi) flight test without issue, Musk has stated that the next step would be orbital flight tests. Starship SN6’s steel rings, meanwhile, are already being formed and stacked as SN5 nears completion.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”